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Abstract 

One of the main functions of behavioral plasticity lies in the ability to contend with dynamic environments. Indeed, 
while numerous studies have shown that animals adapt their behavior to the environment, how they adapt their 
latent learning and decision strategies to changes in the environment is less understood. Here, we used a controlled 
experiment to examine the bats’ ability to adjust their decision strategy according to the environmental dynamics. 
Twenty-five Egyptian fruit bats were placed individually in either a stable or a volatile environment for four con-
secutive nights. In the stable environment, two feeders offered food, each with a different reward probability (0.2 
vs. 0.8) that remained fixed over two nights and were then switched, while in the volatile environment, the posi-
tions of the more and the less rewarding feeders were changed every hour. We then fit two alternative commonly 
used models namely, reinforcement learning and win-stay-lose-shift strategies to the bats’ behavior. We found 
that while the bats adapted their decision-making strategy to the environmental dynamics, they seemed to be limited 
in their responses based on natural priors. Namely, when the environment had changed slowly, at a rate that is natu-
ral for these bats, they seemed to rely on reinforcement learning and their performance was nearly optimal, 
but when the experimental environment changed much faster than in the natural environment, the bats stopped 
learning and switched to a random decision-making strategy. Together, these findings exemplify both the bats’ 
decision-making plasticity as well as its natural limitations.
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Background
In a dynamic and ever-changing world, prediction of 
the future is both challenging and crucial. The ability to 
accurately estimate the outcomes of specific actions is of 
immense evolutionary advantage, while failures in predic-
tion can result in reduced fitness. In order to determine 
the appropriate actions, animals must first gather and fil-
ter information about their environment develop a model 

of that environment, and then apply beneficial decision-
making processes [1, 2]. In order to make predictions in 
a changing environment, it is important both to update 
one’s current knowledge of the environment and, probably, 
also to adapt one’s information acquisition strategy to keep 
up with the rate of changes in that environment [1, 3, 4].

Previous studies have found that animals are able to 
adapt their information acquisition and decision strate-
gies according to the environment. For example, bum-
blebees were found to rely more on social cues when the 
foraging task was more difficult [3], and woodpeckers 
were found to maximize their food intake by changing 
their assessment and decision-making processes based 
on the difficulty of the foraging task [5].

In this study, we examined the ability of fruit bats to 
learn and respond to changing environmental dynamics. 
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Egyptian fruit bats (Rousettus aegyptiacus) are nocturnal 
mammals that feed mainly on fruits but also on leaves 
and nectar [6, 7].

Fruit bats must routinely contend with a changing envi-
ronment because they forage on ephemeral resources 
whose availability changes at different rates [8, 9]. On 
the one hand, they experience slow seasonal changes in 
which their diet undergoes change over many months, 
while, on the other hand, they also experience faster 
changes on the order of a single night when a specific 
fruit tree is depleted. The environmental dynamics that 
the bats experience might also undergo change when 
conspecific density changes (e.g., increases) and fruit 
trees are depleted more rapidly. It thus seems that it 
would be highly beneficial for fruit bats to be able not 
only to follow the changes in their environment but also 
to adjust their learning rate or even learning strategy 
according to the volatility of that environment.

Here, we tested Egyptian fruit bats’ foraging decisions in 
a controlled laboratory experiment. Twenty-five bats were 
placed individually in an environment in which they could 
choose between two feeders with different reward prob-
abilities. The bats were divided into two groups that dif-
fered in their temporal dynamics. One group experienced 
the task in a more stable environment, in which each 
feeder offered its same reward probability for two consec-
utive nights, before switching between the two. The other 
bats experienced the same setup, but  in a highly volatile 
environment, in which the reward probabilities changed 
every hour, probably faster than any resource change that 
these bats might encounter in the wild. The goal of this 
latter paradigm was to determine the upper limit of the 
bats’ ability to assess a changing environment.

We used two different learning and decision-making 
models to assess the bats’ decision-making process. (1) 
Reinforcement-learning models suggest that animal 
(including human) learning entails updating the values of 
previous actions, based on their outcomes [10–14]. Tem-
poral-differences learning (e.g., Q-learning) is a form of 
reinforcement learning in which the learner has no prior 
knowledge on the probability of reward [10–12, 15–17]. 
Here, the learner follows and updates state-action val-
ues (known as Q-values), which are associated with the 
predicted values for each possible action given a certain 
state. Q-values are updated following each action based 
on a prediction-error (δ), which is defined as the dif-
ference between the action’s value prediction and the 
observed reward. The updating of the action’s Q-values is 
scaled based on a learning rate (α). Specifically, learning 
rates control the influence of past experience with low 
learning rates suggesting an integration of  many previ-
ous trials, and high learning rates suggesting an influence 
of the most recent trials.

The optimal learning rate (α) depends on the rate of 
change in the environment, which is often referred to as 
its volatility. In a volatile environment, information must 
be updated more often than in a less volatile one in order 
to enable more accurate predictions. In a Q-learning 
framework, giving more weight to recent experience is 
equivalent to relying on a higher learning rate. In a sta-
ble environment, in contrast, distant previous experi-
ence can still be predictive and thus should be considered 
when making decisions, which is equivalent to using a 
lower learning rate. In general, integrating information 
derived over a longer period helps to avoid the effect of 
misleading (noisy) extreme values, whereas considering 
mostly recent outcome history is more optimal when the 
environment is volatile [10, 11, 14, 18].

Although the learning rate is key to dealing with a 
dynamic environment when using reinforcement learn-
ing, to the best of our knowledge, the effect of environ-
mental volatility on learning has never been studied 
before in non-human animals. Little is known about ani-
mals’ ability to estimate the volatility of the environment 
and to adjust their learning rate accordingly or to switch 
their learning strategy in order to improve their updat-
ing of information. In this study, we therefore examined 
whether reinforcement learning could explain the bats’ 
behavior. Individual bats’ learning rates were estimated 
by fitting a reinforcement learning model to each bat 
based on its choices. We hypothesized that, if they use 
reinforcement learning, the bats exhibit different learning 
rates under different environmental volatilities.

(2) We also compared the bats’ behavior to a Win-
Stay-Lose-Switch model (WSLS). According to this sim-
ple decision-making strategy, when a choice results in a 
favorable outcome (win), it increases the likelihood of 
sticking with the same choice (stay), and, conversely, if 
the outcome is unfavorable (lose), it prompts a shift to 
explore alternative options. Unlike reinforcement learn-
ing, the degree of surprise derived from the outcome 
does not play a role in the learning and decision-making 
processes.

Our findings suggest that bats rely on reinforcement 
learning in a stable environment and adjust their deci-
sion-making strategy based on the environment’s vola-
tility. We also provide new insights into the limits of 
temporal learning.

Results
Wild-caught bats were placed individually in a tent 
for four nights together with two feeders that secreted 
mango juice as a reward when they landed on them. One 
feeder was more rewarding than the other, with a reward 
probability of 0.8, while the other feeder had a reward 
probability of only 0.2. A total of 25 bats were allowed to 
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individually explore one of the two different environmen-
tal dynamics for four nights (each). Fifteen bats experi-
enced the stable environment, in which the rewarding 
and the less rewarding feeders remained in the same 
positions for two consecutive nights before switching 
their positions. Ten bats experienced the volatile envi-
ronment, in which the positions of the rewarding and the 
less rewarding feeders were switched every hour (Fig. 2).

The bats performed an average of 120.3 ± 59.2 landing-
trials per night, with no significant difference between 
the two groups (P = 0.47, unpaired two sample T-test, all 
results are presented as mean ± SD).

We used a reinforcement learning model to assess the 
bats’ learning rates in the two environments. We tested 
two models: a model without choice perseveration, 
with the learning rate (α) and an inverse temperature 
(β) as free parameters, and a model with choice perse-
veration that also included two additional parameters 
that represented the bats’ perseveration behavior (see 
the “Methods” section and [19, 20].

The data from all four nights of phase 2 (the learning 
phase) of the experiment were used to estimate the bats’ 
learning rate, using three different assumptions in each of 
the two above-noted models:

1:	 Q-values were initialized to zero between nights, thus 
assuming that the bats began learning from scratch 
each night.

2:	 Q-values decayed between nights, thus assuming that 
the bats would partially forget their previous night’s 
experience. To this end, a third reducing parameter 
was added to the model, simulating the “decay” fac-

tor between 0 and1. The decay factor was multiplied 
by the previous night’s Q-values, in which a higher 
decay factor decreased the Q-values, representing 
a more forgetful behavior. The decay factor was fit-
ted to each bat individually using the same approach, 
together with α and β (see above)

3:	 The learning rate was estimated without adjusting 
the Q-values between nights, thus assuming that the 
bats had fully remembered their experience from the 
previous night.

In total, we tested six reinforcement learning models 
(three models without choice perseveration and three 
models with choice perseveration).

A comparison of the models’ BIC showed that the 
model assuming partial retention memory between con-
secutive nights, without perseveration, provided a better 
fit of the data for all bats, and we thus report the results 
for this model and used this model for the rest of the 
analysis (see Table 1, Additional file 1: Table S1, Table S2, 
which also provide the results for the AIC). In the rest of 
the study, we estimated the α, β, and the memory decay 
factor for each night separately, assuming partial reten-
tion memory between nights, without perseveration.

Environmental effect on learning
Both environments (stable vs. volatile) and the night-
number (1–4), as well as the interaction between them, 
had a significant effect on the learning rate (Fig.  1A, 
P = 0.03, P = 0.009 and P = 0.04, for the effects of environ-
ment, night, and their interaction respectively, mixed-
effects generalized linear model—GLMM—with α—the 

Table 1  Model parameters for the GLMM testing the effects of the environment on the learning rate and success rate. Environment 
and night as fixed effects, with a random effect of the individual bats, link function with identity

Alpha AIC BIC LogLikelihood Deviance
 − 23.08  − 8.08 17.538  − 35.076

Fixed effects coefficients (95% CIs):
Name Estimate SE tStat DF P value Lower Upper
Intercept 0.35 0.07 5.00 86 0.00 0.21 0.49

Volatile environment  − 0.25 0.11  − 2.21 86 0.03  − 0.47  − 0.02

Night (1 to 4)  − 0.05 0.02  − 2.67 86 0.01  − 0.09  − 0.01

Volatile environment: night 0.07 0.03 2.10 86 0.04 0.00 0.13

Success rate AIC BIC LogLikelihood Deviance
128.93 143.93  − 58.46 116.93

Fixed effects coefficients (95% CIs):
Name Estimate SE tStat DF P value Lower Upper
Intercept  − 0.38 0.19  − 2.00 86 0.05  − 0.75 0.00

Stable environment 0.48 0.24 1.97 86 0.05  − 0.01 0.96

Night (1 to 4) 0.05 0.06 0.91 86 0.36  − 0.06 0.17

Stable environment: night 0.09 0.08 1.19 86 0.24  − 0.06 0.24
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learning rate set as the explanatory parameter, the envi-
ronment and night as fixed effects, with a random effect 
of the individual bats, see Table  1). The average learn-
ing rate in the stable environment was significantly 
higher than in the volatile environment 0.22 ± 0.28 vs 
0.14 ± 0.17, respectively. When excluding the third night 
(in which the stable feeder’s position was switched and 
α dropped accordingly), the difference was even more 
significant, and the two groups’ alphas were 0.25 ± 0.29 
and 0.13 ± 0.18 for the stable and volatile environments, 
respectively. The average decay factor, a parameter that 
simulated the forgetful behavior of the bats between 
nights, was 0.33 ± 0.42 vs 0.55 ± 0.41 in the stable and the 
volatile environment, respectively.

Foraging efficiency
The above analysis had revealed environment-dependent 
differences in learning rates. Next, we therefore sought to 
further understand to what extent these differences also 
translated to differences in overall gains. We therefore 

defined a bat’s success rate as the proportion of deci-
sions that led to reward. Bats in the stable environment 
were significantly more successful in foraging than bats 
in the volatile environment (Fig.  1B, D, the success rate 
was 0.61 ± 0.08 vs. 0.44 ± 0.06 on average, respectively, 
P = 0.05, estimate = 0.48, GLMM with the success rate as 
the explanatory parameter, with a logit link function, and 
the other parameters as above, see Table 1). These results 
suggest that while the bats in the stable environment had 
learned the more rewarding feeder, the success rate of the 
bats that experienced the volatile environment did not 
significantly differ from chance (Fig. 1B, D, P = 0.15, bino-
mial test), and did not improve over consecutive nights 
(P = 0.26, one-way repeated measures ANOVA, with the 
success rate of the volatile bats as the explanatory param-
eter and the night-number (1–4) as the explanatory 
factor).

We next used a simulation to estimate the optimal 
learning rate for each environment (i.e., the learning rate 
that provides the highest foraging success; the “Methods” 

Fig. 1  Bats adjust their foraging decision-making according to environmental volatility. In all panels, the boxes represent the area between the first 
quartile and the third quartile, with the median lines marked inside the boxes and the means marked with X. The lines from the boxes extend 
to the lowest/highest data points within 1.5 of the distance between the upper and lower quartiles. Circles and triangles represent females 
and males respectively. In panels A-C: stable: in nights 1-2: n= 14 bats, an in nights 3-4: n= 13 bats; volatile: n= 9 bats.A Both environment 
and night number had a significant effect on the learning rate (nights 1–2: n = 11 males, 12 females, nights 3–4: n = 11 males, 11 females). B Bats 
in the stable environment were more successful than bats that experienced the volatile environment. C The nightly reward effect on the stay 
probability for the volatile and the stable environments. D Bats that experienced the stable environment increased their success rate from the first 
to the second night, success rate decreased on the third night, and increased again in the fourth night. Success rate of bats that experienced 
the volatile environment did not change over the nights and was always close to chance (0.5). E Left—Stable environment simulations. A learning 
rate of 0.4 gave the optimal success rate. Right—Volatile environment simulations. A learning rate of 1 gave the optimal success rate. The estimated 
learning rate of the real bats is depicted by a dashed vertical line in both panels with the success rate of the bats shown as a red dot
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section, Fig.  1E). Our results reveal that, in the stable 
environment, the bats’ performance was not far from the 
optimal enabled by reinforcement learning, while in the 
volatile environment, they fell far below the optimal. In 
the stable environment, the maximal success rate in the 
simulation (obtained for alpha = 0.4) was 0.68 ± 0.08 in 
comparison to 0.61 ± 0.08 in the real bats. This differ-
ence was not significant on any of the nights (first night: 
P = 0.14, 0.55 ± 0.18, second night: P = 0.32, 0.65 ± 0.11, 
third night: P = 0.12, 0.54 ± 0.12, fourth night: P = 0.55, 
0.7 ± 0.1 for the real bats, vs. 0.68 ± 0.08 for the simulated 
bats, we compared the real bats’ success rate to 108 simu-
lations, see the “Methods” section). The fact that the bats’ 
success was not different from that expected when using 
reinforcement learning with an equivalent learning rate 
strengthens our conclusion that they were employing 
some type of reinforcement learning.

In the volatile environment, the maximal simulated 
success rate (obtained for alpha = 1) was 0.61 ± 0.03 
in comparison to a significantly lower rate in the real 
bats 0.44 ± 0.06 (first night: P = 0.009, 0.42 ± 0.08, sec-
ond night: P = 0.009, 0.44 ± 0.09, third night: P = 0.009, 
0.44 ± 0.06, fourth night: P = 0.009, 0.46 ± 0.07, for the real 
bats, vs. 0.61 ± 0.03 for the simulated bats, for 108 simu-
lations). This significant difference between the bats’ and 
the model’s performance (even when fitting the behavior 
to the model) suggests that the bats were not using rein-
forcement learning in the volatile environment, which led 
us to examine another model (below).

Reward effect on stay probability
A well-established approach that enables the uncover-
ing of learning over consecutive nights is to examine the 
effect of the outcome (i.e., reward vs. no reward) on the 
bats’ staying behavior, i.e., their probability of choosing 
the same feeder in two consecutive trials (the “Meth-
ods” section). The overall effect of reward on stay prob-
ability was significantly higher than zero in both groups 
(P = 3.13E − 12, P = 0.0001 for the stable and volatile 
environment, respectively, one sample, one-sided T-test, 
see the “Methods” section). However, the reward effect 
showed opposite patterns in the two different environ-
ments: steadily (and significantly) decreasing in the 
volatile environment, while remaining the same in the 
stable environment (Fig.  1C, R =  − 0.98, P = 0.02 and 
R = 0.6, P = 0.4 for the volatile and stable environments, 
respectively, Pearson’s correlation test for the correla-
tion between the reward effect and night number). These 
results suggest that the bats’ behavior in both environ-
ments was sensitive to reward delivery. However, while 
the bats in the stable environment had clearly learned 
which feeder was more rewarding, the bats in the volatile 
environment appear to have learned that there was no 

environmental regularity and they probably switched to 
using a different strategy, which we further discuss below.

Win‑Stay‑Lose‑Shift (WSLS) model
We also compared the likelihood of the reinforcement 
learning model to a simple Win-Stay-Loose-Shift (WSLS) 
strategy (the “Methods” section). WSLS is a straightfor-
ward decision-making model. It operates on the principle 
that when a choice results in a favorable outcome (win), it 
increases the likelihood of sticking with the same choice 
(stay). Conversely, if the outcome is unfavorable (lose), 
it prompts a shift to explore alternative options. The 
WSLS and the reinforcement learning models had simi-
lar likelihoods for both the volatile and stable environ-
ments (74.29 ± 37.67 vs. 76.67 ± 33.88 and 67.14 ± 40.31 
vs. 64.24 ± 39.13, respectively. There was no significant 
difference between the likelihood of the models in either 
of the environments: P = 0.46 and P = 0.2, paired sample 
T-test).

In contrast to the similar likelihoods, the success rates 
predicted by the WSLS (after fitting their parameters to 
the data) significantly differed from those observed in real-
ity. Success rate in the simulations was significantly higher 
than in the real bats in the volatile environment (0.52 vs 
0.44 ± 0.07, respectively, P = 0.01, we compared the bats’ 
success rate to 100 simulations, see the “Methods” section) 
and significantly lower than reality in the stable environ-
ment (0.52 vs 0.61 ± 0.09, respectively, P = 0.01, for 100 
simulations).

Discussion
In this study, we examined how animals, specifically fruit 
bats, adjust their information acquisition and decision-
making strategy in environments with different tempo-
ral dynamics. We found that while fruit bats can clearly 
learn the dynamics of their environment, their learning 
seems to be restricted to biologically relevant temporal 
dynamics. Specifically, we found that when the environ-
ment changed very fast (every hour) the fruit bats did 
not elevate their learning rate to keep up with the rate of 
change. In the wild, Egyptian fruit bats feed on fruit and 
nectar-providing trees, which offer food for time periods 
of several days–weeks. A switch in resource availabil-
ity occurring after 2 days, such as that which the stable 
group experienced in our study, is thus within the natu-
ral range experienced by this species in the field, and, 
accordingly, the bats learned it, and their performance 
was comparable to an optimal reinforcement learning 
agent. The bats’ success was thus not significantly differ-
ent from the prediction of the best reinforcement-learn-
ing model.

Some indirect evidence suggests that fruit bats in 
the wild are also able to adjust their foraging-decision 
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strategy. In a previous study, it was shown that in urban 
environments, which are characterized by faster temporal 
dynamics, bats switch between foraging trees much more 
often than in rural environments, doing so on an almost 
nightly basis [8]. The advantage of this behavior is not 
clear, but one explanation could be the need to increase 
their environmental update rate. Although recent study 
has shown that urban bat pups are faster learners than 
rural pups [9], that study only compared bat populations 
and did not relate to the possibility that individuals are 
able to adjust their learning rate, as we examined here.

In comparison to the stable environment, the vola-
tile environment, which changed every hour, offered a 
temporal pattern that is probably never encountered in 
the wild by these bats. We note that although the bats 
might occasionally experience nectar trees that become 
depleted within a few hours, they probably never expe-
rience a switching environment in which an entire tree 
is depleted and then replenished within 2 h. Counter to 
our expectation, rather than increasing their learning rate 
in the more volatile environment, the bats significantly 
decreased it, implying that they simply could not counter 
this swift rate of change (see more below).

It has been shown in humans that they will adjust their 
learning rate according to environmental volatility. While 
we find that such adjustments are probably limited by 
priors about environmental dynamics. We cannot deter-
mine whether these priors are innate or learned. Some 
animals have been shown to sample the environment in 
order to update their priors. Woodpeckers, for exam-
ple, have been shown to change their decision-making 
process in a foraging task based on task difficulty: in the 
more difficult task, when uncertainty was higher, they 
spent more time gathering sufficient information before 
making a decision [5].

Learning rates also seem to be species-specific within 
bats. Goldshtein et  al. [21] showed that nectarivorous 
bats that forage in an environment with much faster 
dynamics, where nectar is routinely depleted and replen-
ished within hours, exhibit much faster learning.

Our current findings suggest that a reinforcement-
learning model could explain the behavior of the bats in 
the stable environment, but what strategy did the bats in 
the volatile environment employ? Both models that we 
tested (reinforcement-learning and WSLS) had a similar 
likelihood, but both predicted significantly higher per-
formance (success) than that demonstrated by the actual 
bats. We thus suggest that the bats in the volatile environ-
ment adopted a random selection strategy that located 
their performance at chance level. This is somewhat sur-
prising, because even a simple pure Win-Stay-Lose-Shift 
strategy could have yielded a better performance (Addi-
tional file  1: Figure S1). One reason not to use a pure 

WSLS strategy (in which the animal either stays 100% 
of the time or shifts 100% of the time, based on reward) 
was suggested by Lyu et al. [22] who noted that shifting 
resources (in our case the feeders) also comes with a cost 
and thus might prevent animals from using a WSLS strat-
egy if the environment is highly unstable.

Note that the bats in the volatile environment seemed 
initially to try learning, as can be understood from the 
effect of reward on their stay probability. Any learning 
model should increase the probability of an action that 
leads to reward. Consequently, a reward should have a 
positive effect on the probability of repeating the action 
that led to this reward, which in our task meant choos-
ing the same feeder again in case it proved to be profit-
able. The overall effect of reward on the stay probability 
was significantly higher than zero in both groups, mean-
ing that the bats were more likely to return to the same 
feeder after receiving a reward. However, while the effect 
of reward remained roughly the same (with a slight ten-
dency to increase) in the stable environment, it con-
stantly decreased in the volatile environment, reaching 
nearly zero on the last night, suggesting that the bats 
were gradually giving up on learning.

Conclusions
Our findings suggest that bats possess behavioral plastic-
ity, allowing them to adjust their information acquisition 
and decision-making strategy according to the environ-
ment’s dynamics. They also indicate that such plasticity 
might however be bounded and restricted to ecologically 
plausible environments only.

Methods
Study species and housing
The study comprised 25 Egyptian fruit bats (Rouset-
tus aegyptiacus) (12 females: 8 adults, 4 juveniles; and 
13 males: 11 adults, 2 juveniles, see Table 2). The adult 
bats were captured in a natural colony in central Israel 
(Herzliya) in December 2019 and were housed together 
with an already existing colony of Egyptian fruit bats. 
The juvenile bats were either born in our captive colony 
or brought to the colony with their mothers at a very 
early age.

The colony (4 × 2 × 2.9 m3) comprised a total of 30 bats. 
They were kept under a 12:12 light to dark cycle, at a sta-
ble temperature of 24 ± 2 °C.

Experimental setup
The experiments took place in two identical tents 
(2.4 × 2.4 × 1.85 m3) in a controlled temperature room 
(24 ± 2  °C), next to the captive bats’ colony, allowing 
the bats in the tents to hear the sounds from the col-
ony and thereby reduce stress. The floor underneath 
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each tent was covered with 25 pieces of 50 × 50 × 1 cm 
soft foam mat, to prevent bat injury in case of a fall. 
The tent walls were covered with black felt from about 
1 m above the floor to the tent top, allowing the bats to 
hang anywhere. A 30 × 30 cm2 plastic net was placed at 
the top of the tent to enable perching. Each tent held 
two feeders, placed one meter apart. Each feeder (see 
Fig.  2A) contained a 50 × 50 × 1 cm3 vertical wooden 
platform covered with felt and a plastic net. A pump 
was installed on the side of the wooden square, with a 
5-mm pipe that ended in a 10-ml tube. Another pipe 
was connected to the tube, allowing a max of 6  ml of 
juice to accumulate in the tube. The pumps were pro-
grammed to secret 3 ml of mango juice whenever a bat 
landed on the platform. Detection of landing was based 
on RFID. All landings were logged to a computer. A 
GeoVision camera located on the floor filmed the two 
feeders during the experiments.

Experimental procedure
The experiments consisted of two phases: the exposure 
phase and the learning phase (see Fig. 2B). All experi-
ments took place at night, the bats’ natural activity 
time, from around 16:00 to around 9:00 the next day, 
after the same number of hours since being fed. The 
bats were kept in the captive colony in between experi-
ments. In addition to the mango-juice feeders, a bowl 
of water was permanently available in the tents.

Phase 1: Exposure
The goal of this phase was to familiarize the bats with 
the experimental setting and to ensure that they had 
learned to feed from the feeders. To reduce the bats’ 
stress, the exposure phase was done using pairs of bats. 
The bats were kept in the experimental tent for one 
night and both feeders provided a reward of 3  ml of 
mango juice for each landing.

Phase 2: Learning
In this phase, we measured the bats’ learning rate. Each 
bat was kept alone in the same experiment tent for 
four consecutive nights. One of the feeders was more 
rewarding (hereafter the “rewarding feeder”) with a 
probability of 0.8 of providing a reward with each land-
ing, while the other feeder was less rewarding (here-
after the “less rewarding feeder”), with a probability 
of only 0.2 of providing a reward. The first position of 
the rewarding feeder was on the right side of the tent 
for half of the bats and on the left for the other half. 
The bats were randomly allocated to either a stable or 
a volatile environment. In the stable environment, the 
rewarding and the less rewarding feeders remained in 
the same positions for two consecutive nights, after 
which their positions were switched. In the volatile 
environment, the position switch between the reward-
ing and the less rewarding feeders was systematically 
applied every hour (i.e., R-L-R-L).

Fifteen bats (10 adults and 5 juveniles) were exposed 
to a stable environment, and 10 bats were exposed to a 
volatile environment. During the daytime, the bats were 
returned to their colony.

Analysis
A trial was defined as a bat landing on a feeder—either 
when switching from one feeder to the other or when 
landing on the same feeder, when at least three seconds 
had passed from the time of previously leaving that 
feeder. We extracted the following information for each 
bat: the time of each landing, the chosen feeder in each 
trial, the reward the bat received (0 for no reward or 1 if 

Table 2  The 25 bats that participated in the study. Asterisks 
mark bats that were born in the captive colony. The table 
indicates which environmental condition was experienced by 
each bat

Subject 
number

Name Origin Sex Age Environment

1 Shraga Herzliya M Adult Stable

2 Yossi Herzliya M Adult Stable

3 Gimel Herzliya M Adult Volatile

4 Lamed Herzliya M Adult Stable

5 Aein Herzliya M Adult Volatile

6 Eight Herzliya M Adult Stable

7 Tzadi Herzliya M Adult Stable

8 Zurik Herzliya M Adult Volatile

9 Amos Herzliya M Adult Stable

10 Four Herzliya M Adult Stable

11 Arrow Herzliya F Adult Stable

12 Slash Herzliya F Adult Volatile

13 W Herzliya M Adult Stable

14 Percent Herzliya F Adult Volatile

15 LT Herzliya F Adult Stable

16 w-pup Herzliya F Juvenile Stable

17 2 dots Herzliya F Juvenile Stable

18 4-pup Countryside F Juvenile Stable

19 u-pup Herzliya F Juvenile* Stable

20 mirrored V Herzliya M Juvenile Volatile

21 mirrored R Herzliya M Juvenile* Stable

22 Lynn Hill Herzliya F Adult Volatile

23 Rosalind Herzliya F Adult Volatile

24 Ada Herzliya F Adult Volatile

25 Simone Herzliya F Adult Volatile
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it received a reward) in each trial, and the total number 
of trials.

Estimating the bats’ learning rates‑ Reinforcement‑learning 
models
We tested two models—a model without choice per-
severation and a model with choice perseveration, as 
explained below, using MATLAB scripts.

We used maximum-likelihood estimation using the 
Matlab function “optimoptions” to estimate bats’ individ-
ual parameters. For each bat, we used 50 starting points 
that were randomly chosen by the computer. We used the 
best fitting parameters as an estimate for the bats’ latent 
learning parameters. We compared the models’ fit using 
a BIC score.

Model without perseveration
We used a Q-learning model to calculate the learning 
rate (α). We simulated Q-values for each action on each 
step and the probability of choosing each action accord-
ing to the SoftMax policy (see Eq. 1) [15, 23], where β is 
the inverse temperature parameter, i.e., the parameter 
that determines the sensitivity of the choice probabilities 
to the difference in values. Large values of β make the 
choice more sensitive to the values difference, while low 
values of β make the choice less sensitive to the difference 
in values [15, 23].

where Qi is the Q-value for the chosen action i (a or b), β 
is the inverse temperature parameter, and t is the index of 
the trial.

Q-values are updated based on the outcome (see Eq. 2).

where Qi is the Q-value for the chosen action i, and t is 
the index of the trial. α is the learning rate. The Q-value 
of the unchosen action is not updated [15].

Model with choice perseveration
The model with perseveration includes a learning rate 
(α) and inverse temperature (β) as in the model without 
perseveration, together with two additional parameters 
that represent the bats’ perseveration behavior (the per-
severation rate and perseveration exponent). This model 
keeps track of choice perseveration values ( pval ) for each 
action, which determines the perseveration strengths of 
each action (similar in spirit to the Q-values). The pval are 
initiated at 0.5 and updated after each trial according to 
the perseveration rate ( prate ) free parameter (between 0 
and 1), which determines the magnitude of updating. The 
updating increases the pval of the selected action toward 
1 and the unselected action pval toward 0, regardless of 
the outcome (see Eq. 3). We also included an additional 

(1)P(a(t) = 1) =
exp(β∗Qa,t)

exp(β∗Qa,t)+ exp(β∗Qb,t)

(2)Qi(t + 1) = Qi(t)+ α ∗ (Reward(t)− Qi(t))

Fig. 2  A Experimental setup. (a) Two feeders with landing platforms and RFID antennas. (b) A—juice pump, B—feeding tube, C—RFID antenna. The 
bottle on the side collected juice spillover, allowing us to quantify drinking. B The experimental procedure—phase 1: both of the feeders reward 
with p(reward) = 1. Phase 2: the bats were divided between a stable and a volatile environment. The rewarding feeder (p(reward) = 0.8) and the less 
rewarding feeder (p(reward) = 0.2) changed either every hour (volatile environment) or after 2 nights (stable environment)
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perseveration exponent ( pexp ) free parameter which 
determines how perseverative the bat is; note that the 
setting pexp = 0 is exactly like the RL model without per-
severation. Q-values are updated similarly to the model 
without perseveration (see Eq. 2) [19, 20].

where a is the action, β is the inverse temperature param-
eter, Qi is the Q value for the chosen action i (a or b), P 
exp is the perseveration exponent, P val is perseveration 
value, and t is the index of the trial).

Reward effect on stay probability
Staying was defined as returning to the feeder that had 
been visited in the previous trial. We estimated the stay 
probabilities (for each individual) in both the cases in 
which the bat had received a reward in the previous trial 
and in which it had not. To examine the effect of reward 
on the stay probability (which we term the “reward 
effect”), we subtracted the individual stay probability for 
no reward from that following reward (see Eq. 4).

Foraging efficiency
To determine bats’ foraging efficiency, we calculated their 
success rate. Success rate was defined as the proportion 
of actions that led to reward (see Eq. 5).

Reinforcement‑learning simulations
To examine whether the bats employed an optimal learn-
ing rate that would maximize their success rate, we 
simulated data using a grid search separately for each 
environment and noted the resulting success rates. Spe-
cifically, we changed the learning rate gradually from 0 to 
1 in steps of 0.1. For each learning rate value in the grid 
search, each agent was simulated using a β parameter that 
was sampled from the empirical β distribution estimated 
for the bats (i.e., the bats’ estimated β were used), sepa-
rately for each environment. Since in the stable environ-
ment there were 13 bats each tested for four nights, and 
one bat that was tested for only two nights, this totaled 
on 54 bats’ estimated β. Each estimated β was used twice, 
thus simulating 108 agents in total in the stable environ-
ment for each learning rate. In the volatile environment, 

(3)

p(a(t) = 1) =
exp(β∗Qa+pexp∗pval(a))

exp(β∗Qa+pexp∗pval(a))+exp(β∗Qb+pexp∗pval(b))

(1)pval(a) = (1− prate) ∗ pval(a)

pval(b) = (1− prate) ∗ pval(b)

(2)pval(choice) = pval(choice) + prate

(4)Reward effect = P staying|reward − P staying|no reward

(5)Success rate =
number of rewarded actions

all actions

nine bats had been tested each for four nights, resulting 
in 36 estimated β. Each estimated β was used by three 
agents, thus simulating 108 agents in total in the volatile 
environment for each learning rate. The number of trials 
was 2000 in each simulation.

In our empirical setting, the stable group had a fixed 
reward probability for each feeder for two nights and a 
reversed probability for two additional nights; while the 
volatile group received reversal in the reward probabil-
ity every hour. Bats in the stable environment performed 
on average 251 trials on nights 1–2 before the rever-
sal in probability and 214 trials on nights 3–4 (after the 
reversal in probability). Thus, for the stable environment 
simulation, we used the same fixed reward probability 
as in our empirical settings for 251 trials, then switched 
the reward probability between the choices for 214 trials 
and returned this process until 2000 trials had been car-
ried out. For the volatile environment, we switched the 
reward probability every 13 trials until reaching 2000 tri-
als. This was done because in the volatile environment 
the bats had performed 13 trials on average within an 
hour, before the reward probabilities were switched. The 
simulations are equivalent to the no perseveration model 
without an adjustment of the Q-values between ‘nights’; 
i.e., we did not simulate forgetting.

Win‑Stay‑Lose‑Shift (WSLS) model
Given the binary decision of the task, we modeled a 
WSLS rule-based strategy [24, 25]. Allowing for some 
deviation from the deterministic ruling, we used a two 
free parameter model—the Win-Stay probability ( pstay) , 
which is the probability that the bat returns to the same 
feeder in the next trial after receiving a reward from it in 
the previous trial, and the Lose-Shift probability ( pshift) , 
which is the probability that the bat shifts to the other 
feeder in the next trial after not receiving a reward from 
it in the previous trial (see Eq. 6).

The probability of choosing action i if action i had 
been chosen in the previous trial is either pstay or pshift , 
depending on the previous reward. a is the action, t is the 
index of the trial, and r is the reward (1 or 0).

Parameter estimation for each bat’s decisions was done 
using maximum-likelihood with a self-written Python 
script.

WSLS simulations
For each environment (e.g., stable or volatile) and for each 
combination of WSLS model parameters (from 0 to 1 in 
steps of 0.1), we ran 100 simulations of 2000 trials each. 

(6)

p(a(t) = i) =

{

pstay
pshift

if
if

at−1 = ai and rt−1 = 1
at−1 = ai and rt−1 = 0
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The reward probability of each action was identical to 
those used in the real bat experiments. We averaged across 
the 100 simulations of each environment and parameter 
combination and calculated the success rate (Eq. 5).

Discarded data
Due to a mechanical problem in the feeding system, one 
of the bats (bat 18, the stable environment group) did not 
obtain any rewards during its third night in the experi-
ment. Data from the third and fourth nights of this bat were 
therefore discarded. When examining the effect of reward 
on the stay probability, two bats (bat 1, stable environment 
group; and bat 8, volatile environment group) demon-
strated a negative effect in three out of the four experimen-
tal nights. This suggests that they had failed to learn, and 
they were consequently also removed from the analysis.

Statistics
We used a mixed-effects generalized linear model—
GLMM—with α—the learning rate set as the explanatory 
parameter, the environment and night as fixed effects, 
and subject ID as a random effect. To examine the effect 
of the environment (stable vs. volatile) on the learning 
rate, the model without the sex interaction produced a 
better fit (BIC =  − 8.08 for the model without sex interac-
tion vs BIC =  − 7.05 for the model with sex interaction). 
To determine the effect of the environment on success 
rate, we used a GLMM, with the success rate set as the 
explanatory parameter, with a logit link function, and 
the other parameters as above. To determine the signif-
icance of the reward effect on stay probability, we used 
a one-sample one-sided T-test on each group (stable or 
volatile). To determine the nightly reward effect on stay 
probability, we used Pearson’s correlation of median 
reward effect with night number (1–4).

To determine the difference in success rate between the 
real bats and the simulations, we compared the real bats’ 
success rate to 108 reinforcement-learning simulations 
(with optimal alpha) and to 100 WSLS simulations with 
the same parameters as estimated for the bats and exam-
ined whether the bats’ success rate in each group was in 
the lowest or highest 5% of the simulations’ success rate 
within the same environment.

To compare between all the reinforcement models, we 
used BIC. BIC is considered to be more conservative than 
AIC and therefore more suitable for a small sample size 
in estimating model fit.

To compare between the reinforcement-learning model 
without choice perseveration and the Win-Stay-Lose-
Shift model, we compared their log-likelihoods, since 
both models have the same number of free parameters. 
All the results are presented as mean ± SD.
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