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COMMENT

Single-sample network modeling on omics 
data
Margherita De Marzio1, Kimberly Glass1,2* and Marieke L. Kuijjer3*   

Modeling networks for single samples can facilitate discoveries in biology that go beyond those found when 
analyzing an “aggregate” network, i.e., one that merges information across all the samples in an omics data 
set. In this commentary article, we discuss the history, current state, and future directions of the field of 
single-sample network modeling using omics data.

History of single‑sample network inference
Biological systems are interconnected and regulated 
through a complex network of molecular interactions, 
signaling pathways, and genetic feedback loops. This 
complexity makes network modeling a crucial tool for 
understanding the underlying mechanisms driving bio-
logical and disease processes. Since the introduction of 
high-throughput assays, numerous methods have been 
developed that use omics data to model biological net-
works, especially gene regulatory and co-expression 
networks. Most such approaches harness data across 
multiple omics samples to construct a single network 
that represents the entire dataset. These “aggregate” net-
work models have greatly contributed to our compre-
hension of health and disease. Nevertheless, they cannot 
reveal intrinsic variations in network heterogeneity at the 
level of the individual sample.

In contrast to many other areas in computational biol-
ogy, single-sample network inference is a somewhat 

niche area, with only a handful of established methods; 
however, it is an area that is critical for relating networks 
to clinical features or other types of metadata, especially 
in heterogeneous diseases or populations, as well as 
large-scale datasets generated by different groups. The 
first attempts to extract network information for single 
samples worked by layering sample-specific information 
onto an existing network structure (such as a protein–
protein interaction network). These methods often link 
gene expression information to nodes to obtain sample-
specific “activity” scores for specific genes or regulators 
[1, 2]. Another popular approach is to select network 
edges or nodes with sample-specific omics information 
to obtain a “pruned” network for each sample. Recently, 
two main computational approaches, LIONESS [3] and 
SSN [4], have emerged that explicitly infer single-sam-
ple networks. Each of these methods employs a distinct 
mathematical framework to tackle the common chal-
lenge of inferring the network of a single sample by pool-
ing population-level information.

The current state of the field
LIONESS and SSN both use a leave-one-out approach, 
modeling a single-sample network as a linear perturba-
tion to an aggregate population network. SSN assigns an 
edge to a node pair in a single “case” sample if the cor-
relation coefficient of that pair differs significantly when 
the sample is added to a reference control population. 
The resulting output is a differential single-sample net-
work based on correlation. Thus, SSN edges represent 
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molecular interactions that are dysregulated in a case 
subject compared to a control group. Conversely, LION-
ESS does not distinguish between case and control 
samples and is designed to be applied to the output of 
an aggregate network inference approach. Its found-
ing principle is that an aggregate network, summarizing 
biological information from the entire population, can 
be modeled as a linear combination of individual com-
ponent networks. Based on this assumption, LIONESS 
generates a single-sample weighted network, wherein 
each edge represents the contribution of that sample to 
the aggregate population network. The LIONESS edge 
weight accounts for biological patterns that are specific 
to the individual as well as those shared across all the 
samples in the population.

LIONESS and SSN often provide the core methodology 
used by other single-sample network inference methods. 
For example, LIONESS networks have been integrated 
with molecular interaction databases to reconstruct 
refined patient-specific networks from cancer data [5]; 
a rescaled formulation of LIONESS has been applied to 
account for sample-size imbalances in dataset subpopu-
lations [6]. Linear regression models have also been 
employed to identify the differential regulatory network 
of a case sample compared to a reference control popula-
tion [7].

In addition to their broad application to transcrip-
tomics data, single-sample network algorithms have 
demonstrated applicability across other omics domains, 
including metabolomics, epigenomics, and microbiome 
studies. Early applications of these algorithms generally 
focused on characterizing personalized cancer drivers 
and regulatory interactions. Over time, single-sample 
networks have been applied in the context of cancer, car-
diovascular and respiratory diseases, and neurodevelop-
mental disorders and to study sex-specific differences in 
gene regulation. These applications have provided valu-
able insights into the molecular interactions that underlie 
individual phenotypes, advancing the field of precision 
medicine.

Strengths and caveats of existing methods
Network inference approaches that are based on layer-
ing sample-specific information on a fixed set of known 
network interactions have helped identify sample-spe-
cific network properties. However, these methods, by 
themselves, cannot capture new interactions, which in 
turn need to be inferred from downstream analyses. In 
contrast, methods that explicitly infer a single-sample 
network do not suffer from this limitation. They also can 
incorporate information from additional related samples 
to boost sample size, thus enhancing statistical power. 

This can be helpful when a limited number of samples are 
available for a biological condition of interest.

Single-sample networks provide a distinct advan-
tage compared to differential network approaches, since 
they enable comparisons when explicit groups are not 
available. This can, for example, be the identification of 
network changes associated with continuous clinical 
variables or the detection of new subtypes. In addition, 
analysis of single-sample networks can be corrected for 
potential confounders in a dataset, which may arise due 
to technical variation (batch effects) or known clinical 
features that contribute to network heterogeneity.

One caveat for methods that explicitly infer single-sam-
ple networks is that they work by borrowing information 
from a set of background samples. Therefore, single-
sample networks inferred using different backgrounds 
may differ. Thus, it is important to carefully consider 
what samples to include in the background. This may be 
particularly challenging when dealing with heterogene-
ous datasets. Including samples from different groups 
(e.g., samples from several disease subtypes) in the back-
ground is commonly done when performing compara-
tive network analyses between multiple groups. When 
the aim is to characterize networks across a homogene-
ous subgroup of samples, it may be best to only include 
samples from that subgroup, as the differences between 
samples may be easier to interpret.

Interpreting single-sample network edge weights can 
also be challenging, as the inferred weights typically do 
not explicitly follow the distribution of weights obtained 
for the aggregate network model. For example, it is 
unclear what “sample-specific correlation” means as sin-
gle-sample edge weights inferred from correlations may 
not necessarily be bounded by [-1, 1]. These different dis-
tributions may impact downstream network analysis.

Finally, single-sample networks can be more sensitive 
to the preprocessing of the input data compared to aggre-
gate networks, as a perturbation in a single sample is 
used to estimate network edges. This makes it challeng-
ing to distinguish between perturbations (and therefore 
edges) that are true signals compared to random noise, a 
problem exacerbated when data are very sparse.

Challenges in assessing single‑sample networks
One particularly challenging aspect of single-sample 
network inference is that there is no clear standard for 
systematically assessing the inferred networks. Meth-
ods often differentiate themselves by highlighting their 
ability to address a specific methodology issue or bio-
logical question; thus, single-sample networks have been 
assessed inconsistently and in ways that inevitably put 
the method in question in the best light.
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Identifying an appropriate standard to evaluate sin-
gle-sample network accuracy is non-trivial (and may be 
impossible). There is no set of experimentally-derived 
networks that can be used as a benchmark, and even if 
there was, it would not be appropriate in all contexts; the 
appropriate benchmark for single-sample correlation net-
works will differ from that for single-sample regulatory 
networks; the standard for a sample-specific differential 
network will differ from that for a single-sample net-
work that captures both differential and common edges. 
Although simulated data may be appealing for evaluating 
single-sample networks, it is inherently limited. Features 
of data-generating models can impact covariance pat-
terns, changing the apparent performance of methods in 
a manner that better reflects consistency with the gener-
ating model’s assumptions than actual network accuracy.

This begs the question of how important it is to com-
pare the “accuracy” of single-sample network methods 
versus understanding their relative strengths, limitations, 
and potential biological applications. Unfortunately, it 
is nearly impossible to assess methods based solely on 
biological findings, which are qualitative and open to 
interpretation. Adding to the confusion, many single-
sample network methods are often highly related math-
ematically, and specific aspects of them are sometimes 
interchangeable within larger analysis pipelines. Thus, 
it can be challenging to determine how the biologi-
cal findings identified via downstream network analysis 
may differ using various approaches. Overall, it is criti-
cally important to understand what distinguishes differ-
ent approaches, not only methodologically but also in 
terms of the biological questions each is most adept at 
answering.

Future directions of the field
Current approaches that explicitly infer sample-specific 
networks are either specifically derived in the context of 
Pearson correlation (SSN) or can be applied to it (LION-
ESS). Due to their relationship to correlation metrics, one 
open question is whether it is possible to derive associ-
ated statistical errors or confidence intervals for the edges 
in the inferred single-sample networks. Going forward, it 
will also be critical to develop methods that can model 
additional types of biological networks that go beyond 
pairwise (correlation) measures. Several recent methods 
in this direction generate sample-specific gene regula-
tory networks using individual epigenetic [8] or genetic 
[9] profiles to modify an initial set of estimated edges. In 
addition, although current methods have been applied 
individually to various types of omics data, new single-
sample inference approaches are needed that simultane-
ously integrate multiple times of omics data. This may be 

an area that is well-suited to emerging approaches that 
use deep learning to infer biological networks.

The recent expansion of high-resolution data types, 
such as single-cell and spatial omics data, will likely 
greatly facilitate single-sample network modeling, 
and several recent approaches have shifted their focus 
towards single-cell-specific rather than sample-specific 
networks [10]. Single-cell data lends itself naturally to 
modeling networks for single samples, which can, for 
example, be inferred for specific cell types. In addition, 
approaches that measure multi-omics data in the same 
cell enable the identification of direct links between vari-
ous omics data types. Future directions in modeling net-
works based on single-cell data should address challenges 
with sparsity, variability in sample size, and heterogeneity 
and how to accurately define cell types used for network 
modeling.

In summary, single-sample network modeling is a rela-
tively new field, with many remaining open questions as 
well as exciting opportunities for future research direc-
tions. We look forward to seeing how this field evolves 
over the coming years and further contributes to omics-
based discoveries in biology.
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