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COMMENT

From byte to bench to bedside: molecular 
dynamics simulations and drug discovery
Mayar Ahmed1†, Alex M. Maldonado1† and Jacob D. Durrant1* 

Molecular dynamics (MD) simulations and computer-aided drug design (CADD) have advanced substantially 
over the past two decades, thanks to continuous computer hardware and software improvements. Given 
these advancements, MD simulations are poised to become even more powerful tools for investigating the 
dynamic interactions between potential small-molecule drugs and their target proteins, with significant 
implications for pharmacological research.

From trial and error to rational drug design
Throughout most of human history, drug discovery relied 
on trial and error. Modern structural biology has revolu-
tionized the field by enabling rational drug design. This 
approach uses the molecular structures of disease-impli-
cated targets (typically proteins) to guide the identifica-
tion and optimization of small-molecule ligands—initial 
hits that can be further developed into drugs. Structure-
based computeraided drug design (CADD) further aug-
ments rational design by using computational methods 
to drastically reduce the physical experiments required 
for hit identification, making early-stage drug discovery 
more cost-effective and efficient.

Traditional CADD techniques focus on static protein 
structures. But proteins are highly dynamic in solution, 
and ligand-binding pockets often sample many pharma-
cologically relevant shapes (i.e., conformations). A given 
small-molecule ligand may bind to and stabilize only a 
subset of conformations that complement its shape and 
specific arrangement of interacting functional groups. 
Moreover, different ligands often stabilize distinct yet 

equally valid pocket conformations. CADD methods that 
exclusively consider a single pocket conformation thus 
run the risk of overlooking potential ligands that may 
bind to alternative conformations.

Molecular dynamics (MD) simulations have emerged as 
valuable tools for investigating the conformational diver-
sity of ligand binding pockets. These simulations approxi-
mate the complex quantum–mechanical forces that 
govern atomic motions by representing atoms and bonds 
as simple spheres connected by virtual springs [1]. CADD 
researchers routinely use MD simulations to unveil phar-
macologically relevant conformational changes, allos-
teric mechanisms, and binding-pocket dynamics. In this 
comment, we provide a concise overview of the intersec-
tion between MD simulations and CADD over the past 
two decades, emphasizing the advancements that have 
enhanced our understanding of protein flexibility and its 
profound impact on drug discovery.

Generating conformational ensembles
To identify structurally diverse small-molecule ligands 
that bind to a dynamic binding pocket, CADD must 
account for multiple physiologically relevant pocket 
conformations. MD simulations are valuable tools for 
capturing these continuous conformational changes, 
including the opening and closing of transient druggable 
subpockets that are challenging to detect experimentally. 
By clustering the many conformations sampled during an 
MD simulation, one can generate a condensed yet diverse 
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set of representative pocket conformations, known as a 
conformational ensemble, for use in subsequent CADD 
analyses.

Enriching conformational ensembles by capturing 
long-timescale dynamics
Longer simulations often reveal more comprehensive 
conformational ensembles. Short simulations primarily 
capture rapid molecular events such as local fluctuations, 
surface sidechain rotations, and fast loop reorientations. 
In contrast, longer simulations show how slow loop reori-
entations, buried sidechain rotations, and some allosteric 
transitions impact binding-pocket geometries, revealing 
druggable conformations that shorter simulations rarely 
sample.

Advancements in computer hardware over the past two 
decades have enabled much longer simulations. Notably, 
the adoption of graphics processing units (GPUs) has 
revolutionized the field by dramatically accelerating cal-
culations. Designed initially as highly parallel processors 
to enhance video game performance, GPUs have been 
repurposed to accelerate scientific calculations, including 
those required for faster and more efficient MD simula-
tions. Ever-increasing supercomputer resources have 
also enabled longer simulations. Supercomputing power 
is commonly measured in floating-point operations per 
second (FLOPS). The performance of the world’s top 
supercomputer in 2000 was 2.4 trillion FLOPs roughly 
the same as an iPhone 14 Pro. By 2010, this performance 
had increased to 1.8 quadrillion FLOPS and then to 1.2 
quintillion FLOPs in 2023.

These hardware advances now allow researchers to bet-
ter explore the pharmacological implications of longer 
timescale dynamics. The first MD simulation was per-
formed in 1977 and captured only 8.8 ps of bovine pan-
creatic trypsin inhibitor dynamics [2]. It took another 
21 years to achieve the first microsecond simulation of a 
protein in explicit solvent a remarkable 10-million-fold 
increase in simulation length and since 2010, several mil-
lisecond-regime simulations have been reported.

Emerging hardware technologies will soon enable 
even longer simulations. Many computing tasks benefit 
from application-specific integrated circuits (ASICs) and 
custom-designed chips tailored for a specific task rather 
than general-purpose use. As the demand for accelerated 
MD simulations grows among academic and industry 
researchers, we expect the proliferation of ASICs with 
optimized architectures explicitly designed for MD accel-
eration, such as those used in the Anton series of super-
computers. Future systems incorporating ASICs, related 
chips called field-programmable gate arrays (FPGAs), or 
other specialized hardware could enable routine access to 
longer, biologically relevant timescales.

Aside from hardware advancements, software advance-
ments have also allowed MD simulations to more thor-
oughly sample physiologically relevant conformations. 
Several methods aim to algorithmically improve sam-
pling along pre-defined pathways that connect different 
conformational states (the “progress coordinate”), but 
others, such as replica exchange, hyperdynamics, and 
some machine-learning approaches, require no prede-
fined coordinate.

More recently, some have sought to enhance binding-
pocket sampling by coupling MD and AlphaFold [3], a 
recently developed machine-learning approach for pro-
tein structure prediction. MD is critical because Alpha-
Fold and related methods often struggle to position side 
chains with the accuracy required for effective CADD. 
MD simulations can correct misplaced side chains, sub-
stantially improving subsequent ligand-binding predic-
tions [4]. Modified AlphaFold pipelines also overcome 
the default implementation’s tendency to converge on a 
single conformation, making it possible to predict entire 
conformational ensembles [5]. These multiple confor-
mations can then serve as seeds for short simulations, 
bypassing the need for long-timescale simulations that 
would otherwise be required to transition between the 
conformational states.

Software acceleration has also benefited advanced 
simulations that capture quantum effects. Classical 
“sphere-and-spring” MD simulations overlook crucial 
interactions such as electron correlation, nuclear quan-
tum effects, and electron delocalization. Consequently, 
classical simulations cannot model chemical reac-
tions, nor can they account for some subtle non-cova-
lent effects that may impact ligand binding. Accurately 
accounting for these factors requires computationally 
intensive quantum mechanical (QM) methods such as 
Kohn–Sham density functional theory (DFT). Machine-
learning models trained on millions of DFT calculations 
have the potential to drastically reduce the computing 
time required for these calculations. These models learn 
to predict quantum effects without having to perform the 
corresponding computationally intensive calculations. 
Although they enable otherwise intractable QM calcula-
tions, these models are still much slower than classical 
methods. We expect ongoing advancements in computer 
speed and accuracy to broaden their adoption in the 
future.

Enriching conformational ensembles via mesoscale 
simulations
Simulating protein targets embedded in larger macro-
molecular complexes or realistic subcellular environ-
ments can also help identify more complete ensembles 
of physiologically relevant pocket conformations. 



Page 3 of 4Ahmed et al. BMC Biology          (2023) 21:299  

These simulations better account for the impact that 
interactions with macromolecular partners have on 
binding-pocket geometries. Over the past two dec-
ades, researchers have made remarkable progress in 
simulating increasingly larger systems. The first atom-
istic MD simulation performed in 1977 had fewer than 
1000 atoms [2]; by 2002, this count increased over 100-
fold (~ 100,000 atoms), and by 2017, it had increased 
to ~ 1 million atoms. In recent years, several simula-
tions have surpassed the 100-million or even the bil-
lion-atom mark. These advancements in simulating 
larger systems have provided unprecedented opportu-
nities to explore complex biological phenomena at an 
atomic level.

Ligand pose prediction
Molecular docking programs are valuable CADD tools 
that predict the binding mode or “pose” of a small-
molecule ligand within a specific binding-pocket con-
formation. Traditionally, pose prediction has relied 
on a single static protein structure derived from tech-
niques such as X-ray crystallography. Although single-
conformation docking can effectively identify true 
ligands, it fails to account for the possibility of alterna-
tive but equally valid pocket conformations. Moreover, 
many proteins lack co-crystallized ligands, making it 
challenging to experimentally determine their ligand-
amenable holo states for use in CADD. In some cases, 
pharmacologically relevant cryptic pockets are entirely 
collapsed unless bound to a ligand. These limitations 
of single-conformation docking underscore the impor-
tance of methods that can better account for full pro-
tein dynamics.

In recent years, molecular docking studies have 
increasingly incorporated ensembles of diverse binding  
pocket conformations, often sourced from clustered 
MD simulations. Ensemble docking, also known as 
relaxed-complex-scheme docking, produces a spec-
trum of scores for each compound by docking each 
into multiple structures rather than just one. One then 
converts this spectrum into a single score, such as the 
ensemble-average or ensemble-best score, which is 
used to rank and prioritize compounds for experimental 
testing.

MD simulations have also emerged as valuable tools 
for validating docked poses. Though docking is widely 
used for drug discovery, the accuracy of docked poses 
is sometimes lacking. To address this shortcoming, 
researchers perform brief MD simulations of the pre-
dicted protein/ligand complex and monitor the ligand’s 
drift from its initial position. Correctly posed ligands 
tend to have greater stability, but incorrectly posed 
ligands often drift within the binding pocket.

Predicting binding‑free energies
MD simulations also play a crucial role in predicting 
ligand binding-free energies. Early-stage drug discovery 
aims not only to discover how small-molecule ligands 
interact with target proteins but also to assess their bind-
ing strength. Simulations provide valuable insights that 
help prioritize the most promising compounds for exper-
imental validation and optimization. MM/GB(PB)SA and 
alchemical methods are popular MD-based approaches 
for evaluating binding-free energies.

MM/GB(PB)SA relies on one or more simulated tra-
jectories of protein, ligand, and protein/ligand com-
plexes. Selected frames from these simulations are used 
to calculate average binding-induced changes in molec-
ular-mechanics and solvation energies. In recent years, 
machine learning has been used to improve the accuracy 
and efficiency of these methods by guiding simulation-
frame selection [6], refining the calculation of MM/GBSA 
energy terms [7], and altering how the individual electro-
static, van der Waals, and solvation terms are combined 
into final free-energy estimates [8]. Machine learning 
has also been used to help researchers select the optimal 
number of MD and MM-PBSA runs to best strike a bal-
ance between accuracy and the need to conserve compu-
tational resources.

Though MM/GB(PB)SA methods are widely used, they 
consider only the bound and unbound states, neglecting 
the influence of intermediate states on binding energy. 
Alchemical simulation methods such as thermodynamic 
integration and free energy perturbation (FEP) [1] can 
overcome this challenge, albeit at a higher computa-
tional cost. These methods calculate relative free ener-
gies by gradually eliminating the nonbonded interactions 
between the ligand and environment (e.g., protein), effec-
tively disappearing the ligand atoms during simulation. 
By observing the system’s response to these nonphysical 
changes, one can estimate the relative binding-free ener-
gies. Alchemical simulations have also benefitted from 
machine learning approaches. AlphaFold-predicted pro-
tein models are now often accurate enough to support 
FEP calculations [9], expanding the drug targets that can 
be studied using this technique. Machine learning can 
also reduce the number of alchemical calculations neces-
sary to screen large chemical libraries in search of novel 
small-molecule inhibitors, an approach that has suc-
cessfully identified inhibitors of various targets (e.g., the 
SARS-CoV-2 papain-like protease [10]).

Conclusion
In recent decades, MD simulations and structure-based 
CADD have benefited from remarkable advancements 
in computational power, software development, and 
machine learning. Using these techniques, researchers 
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can better capture the dynamics of ligand-binding pock-
ets by simulating ever larger systems for ever longer time-
scales. The conformational ensembles these simulations 
reveal enable accurate ligand docking and binding-affin-
ity prediction. As specialized hardware and algorithmic 
developments become increasingly accessible, the impact 
of MD simulations on early-stage drug discovery is 
poised to grow even further.
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