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Abstract 

Background  Circular RNAs (circRNAs) have been confirmed to play a vital role in the occurrence and development 
of diseases. Exploring the relationship between circRNAs and diseases is of far-reaching significance for studying eti-
opathogenesis and treating diseases. To this end, based on the graph Markov neural network algorithm (GMNN) con-
structed in our previous work GMNN2CD, we further considered the multisource biological data that affects the asso-
ciation between circRNA and disease and developed an updated web server CircDA and based on the human 
hepatocellular carcinoma (HCC) tissue data to verify the prediction results of CircDA.

Results  CircDA is built on a Tumarkov-based deep learning framework. The algorithm regards biomolecules as nodes 
and the interactions between molecules as edges, reasonably abstracts multiomics data, and models them as a het-
erogeneous biomolecular association network, which can reflect the complex relationship between different biomol-
ecules. Case studies using literature data from HCC, cervical, and gastric cancers demonstrate that the CircDA predic-
tor can identify missing associations between known circRNAs and diseases, and using the quantitative real-time PCR 
(RT-qPCR) experiment of HCC in human tissue samples, it was found that five circRNAs were significantly differentially 
expressed, which proved that CircDA can predict diseases related to new circRNAs.

Conclusions  This efficient computational prediction and case analysis with sufficient feedback allows us to iden-
tify circRNA-associated diseases and disease-associated circRNAs. Our work provides a method to predict circRNA-
associated diseases and can provide guidance for the association of diseases with certain circRNAs. For ease of use, 
an online prediction server (http://​server.​malab.​cn/​CircDA) is provided, and the code is open-sourced (https://​github.​
com/​nmt31​5320/​CircDA.​git) for the convenience of algorithm improvement.
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Background
circRNA is a covalently closed RNA produced by back-
splicing [1]. circRNAs are widespread in eukaryotes, 
evolutionarily conserved, tissue-specific, highly stable, 
and can accumulate in neural tissues [2, 3]. With rapid 
improvements in biological sequencing technology, mul-
tiple circRNA molecules, such as circNSUN2, CircH-
IPK3, and circNTNG1, have been discovered [4–6]. 
circRNA’s functions and its use as a biomarker and thera-
peutic target for various diseases, such as liver cancer and 
cervical cancer, are also increasingly being studied [7]. 
circRNAs play an important role in several diseases such 
as atherosclerotic vascular disease, nervous system dis-
ease, infectious disease, and cancer and are abnormally 
expressed in rectal cancer and pancreatic duct malignan-
cies [2, 8]. For example, CDR1as is associated with miR-
7, thereby affecting the occurrence and development of 
diabetes, metabolic diseases, brain developmental dis-
eases, and cancer [9]. circRNA is involved in almost all 
human pathological, physiological, and other biological 
processes and may become a functional biomarker and 
therapeutic target for various diseases [10]. This would 
not only enable us to have a deeper understanding of cir-
cRNA but also provide us with a new research direction 
for the diagnosis and prevention of certain diseases.

To date, many predictors were proposed for predicting 
new associations from known circRNA-disease associa-
tions. Such methods include GMNN2CD [11], iCircDA-
MF [12], PWCDA [13], iCDA-CGR [14], GCNCDA 
[15], KGANCDA [16], DWNN-RLS [17], SGANRDA 
[18], GATCDA [19], and RNMFLP [20]. Overall, these 
methods have greatly promoted research on association 
prediction.

The number of experimentally verified circRNA-asso-
ciated diseases is still very small as it is time-consuming 
and laborious to reveal the role of circRNA molecules in 
various diseases through experiments such as biologi-
cal tissues and cells [21]. Machine learning (ML) pro-
vides an efficient way to explore large-scale associations 
[22, 23]. circRNA candidate-associated disease prior-
itization by computational modeling will have powerful 
implications for guiding biological experiments and the 
comprehensive exploration of pathogenic mechanisms. 
To ensure the accuracy of predictions, researchers have 
been working on developing algorithms to identify 
potential circRNAs associated with diseases [24–26]. 
These predictors mostly make use of methods such as 
biological networks, recommendation algorithms, and 
ML. Among such methods, the computing model based 
on deep learning (DL) has recently become the most 
widely used algorithm [27, 28]. Cao et  al. used a new 
computational method GGCDA involving an attention 
mechanism and graph convolutional network (GCN) for 

predicting associations [29]. He et  al. found a disease-
related circRNA-miRNA axis by using a GCN [30]. Wang 
et al. employed a two-layer convolutional neural network 
(CNN) for predicting association labels [31]. Wang et al. 
used the DL of the FastGCN to create the computational 
method GCNCDA and predict potential disease-related 
circRNAs [15]. He proposed a network embedding-based 
adaptive subspace learning method NSL2CD to predict 
potential and discover candidate genes associated with 
disease [18]. DL have achieved excellent results due to 
their powerful learning ability. In particular, GCN, which 
regards circRNA and disease as nodes in a graph and 
associations as the edges of the graph, perfectly combines 
the characteristics of networks and biology. However, 
when predicting, labels are predicted individually based 
on node feature representations, ignoring the depend-
encies between labels. In addition, feature inference and 
label propagation are independent of each other, making 
label propagation unable to fully utilize high-dimensional 
features. In previous studies, we proposed GMNN2CD, 
which combines variational algorithms and alternately 
performs feature inference and label propagation to con-
struct a high-precision prediction algorithm. However, 
GMMN2CD ignores the biological data affecting cir-
cRNA-disease association and does not consider multi-
source biological data.

This study proposes CircDA, a DL framework for pre-
dicting novel disease associations associated with circR-
NAs. The CircDA framework has several characteristics: 
(1) It introduces multisource data and combines rich 
omics data to construct a feature network related to cir-
cRNA and disease. (2) It uses matrix factorization (MD) 
to learn the embedding of the circRNA-disease asso-
ciation matrix and conFig.s, a convolutional network to 
learn deep feature representations. (3) The model com-
bines a graph autoencoder and variational reasoning, 
using a feature reasoning graph network GNNq and a 
label propagation graph network GNNp; combined with 
a variational reasoning algorithm, the two networks 
GNNp and GNNq alternately learn features and propa-
gate labels. (4) Based on ten circRNAs associated with 
HCC predicted by CircDA, a quantitative real-time PCR 
(RT-qPCR) case study was performed on human hepa-
tocellular carcinoma (HCC) tissue samples. Through 
human biological experiments, it was found that five 
circRNAs out of ten circRNAs were significantly dif-
ferentially expressed, which proved the predictive per-
formance of CircDA and could further improve the 
functional research of circRNAs. (5) To facilitate the use 
of CircDA, we built an interactive and non-programming 
web interface. This can reduce the programming pres-
sure on medical and biological workers. To facilitate in-
depth research and improvements based on our work, 
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the code is also open-sourced. This study shows that 
CircDA achieves higher accuracy than many state-of-the-
art methods on evaluation data from benchmark data. 
Case studies demonstrate that CircDA can effectively 
predict unknown disease associations. The applicability 
and robustness of CircDA are demonstrated. The frame 
diagram of CircDA is shown in Fig. 1.

Results
CircDA performance
The main purpose of our study is to build a predictor 
with high accuracy in predicting diseases associated with 
circRNA molecules.

We first optimize the learning rate (LR) according to 
the AUROC and AUPR. First of all, based on experience, 
we analyze the effect of three LR schemes (Adam, step 
size-based decay, linear learning rate decay) and fixed 
LRs (0.002, 0.0005). In Fig.  2A, B, the AUROC values 
obtained by the Adam method are 0.9716, 0.9426, 0.9465, 
and 0.9703, and AUPR values are significantly better than 
those of the other schemes. Therefore, Adam is chosen to 

be the LR of the model, and its initial value is empirically 
set to 0.001.

Furthermore, the hyperparameters α and β in the loss 
function Eqs. (11 and 12) lead to changes in performance. 
αǫ(0, 1) represents the balance between circRNA and 
disease space. The grid search algorithm is used to find 
the optimal solution, and the search step size is 0.05. 
The AUROC and AUPR when the output α value is 0.1, 
0.5, 0.7, 0.8, and 0.9 are displayed in Fig. 2C, D. As the α 
increases, the AUROC and AUPR of the model improve. 
The best performance is achieved with a value of 0.8. 
When the value of α beyond is 0.8, i.e., when α = 0.9, 
the performance of the CircDA begins to decline. After 
parameter optimization and comparison, the value of α is 
chosen to be 0.8.

Then, we analyzed the performance with different 
epochs (Fig. 2E, F) to verify the robustness of the CircDA 
and determine whether the CircDA exhibits overfit-
ting. In Fig.  2E, F, as the epoch increased, the perfor-
mance of the CircDA improved. However, AUROC and 
AUPR degrade when the epoch value is too large, which 

Fig. 1  Structure and functionality of the online portal CircAD. CircAD builds a predictive model based on known experimentally verified 
associations between circRNAs and diseases and conducts experimental verification. CircDA includes dataset collation, heterogeneous network 
construction, classifier construction based on the Tumarkov neural network, HCC-based RT-qPCR experimental verification, and online server 
construction. CircAD provides users with an intuitive interface to browse, search, and predict circRNA-disease associations
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demonstrates the importance of the epoch. We then ana-
lyzed how the GNNp and GNNq loss values change as 
the epoch increased (Fig.  2G). As the epoch increased, 
the loss function curves of GNNp and GNNq of CircDA 
became stable after the initial non-fitting. This demon-
strates the robustness of CircDA.

Embedding enhances the predictive performance 
of CircDA
Feature embedding and deep representation are impor-
tant components of our CircDA. So, we analyze the 
effectiveness of feature embedding and deep representa-
tion. To investigate the effectiveness of feature embed-
ding, we compare the performance of the CircDA with 
that of models without MF (named non-MF) and mod-
els without CNN (non-CNN). Figure 2H shows that the 
performance of CircDA is optimal, higher than that of 
several other cases. First, the AUROC values of CircDA 
are 0.1185, 0.037, 0.064, and 0.0625 higher than those 

of non-MF, which proves that CircDA can learn the 
potential characteristics of circRNA and disease. Com-
pared with non-CCN, the AUROC values of CircDA are 
0.045, 0.0169, 0.0138, and 0.023, which proves that the 
deep features of circRNA and disease can be learned by 
using the convolutional network. By introducing feature 
embeddings, AUROC improves in four datasets, which 
shows that feature embeddings can improve predictive 
performance.

Explore the optimal structure of our model CircDA
To quantify the importance of GMNNs for obtaining 
good predictions, we performed an ablation study by 
first changing the number of graph convolutional (GC) 
layers in the GMNN part of CircDA and then feed-
ing the same features into standard CNN and GNN. 
These ablation studies were performed on four data-
sets to study generalizability. The AUROC histograms 
of the four datasets and the line graphs of the AUROC 

Fig. 2  Performance analysis of our method, comparison of feature embedding strategies, and performance comparison of GMNN network 
models. A, B The AUROC and AUPR values of Adam’s LR scheme and the other four strategies under the four datasets, respectively. C, D The 
AUROC and AUPR values in the optimization process of a value under the grid optimization method, respectively. E, F The AUROC and AUPR values 
of CircDA during the epoch iteration, respectively. G The graph of the CircDA loss value in the epoch iterative training phase. H The comparison 
of the matrix factorization feature embedding strategy in CircDA with the other two strategies. I The comparison between GMNN network model 
and the other four models
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increase the value of CircDA compared with several 
other cases as shown in Fig.  2I. Reducing the number 
of GC layers per GMNNs will greatly reduce perfor-
mance. However, the performance difference caused 
by this change is minimal. One possible explanation 
for this behavior is that through GC layers, CircDA can 
automatically learn and update weights to minimize the 
loss function value, and using more GC layers slightly 
improves the generalization ability of the highest clas-
sification level. However, this comes at the cost of a 
slight drop in accuracy in predicting lower classifica-
tion levels. Then, compared with the common CNN 
and GNN models, the maximum and minimum val-
ues of AUROC and AUPR are 0.03, 0.0902, and 0.026, 

0.02034. This demonstrates the performance of CircDA 
during learning.

The proposed CircDA outperforms basic classifiers
In this section, we calculated the results of FFCV and 
independent test set validation (here, it is called Ide for 
short) of the CircDA and compared them with commonly 
used classifiers (extreme learning machine (ELM), ran-
dom forest (RF), support vector machine (SVM) [32], and 
recommendation algorithm (here, it is called recomm for 
short)) [33]. Some important parameters of the algorithm 
use the default parameters built into the algorithm. The 
results are shown in Fig. 3A. First, the difference between 
the FFCV and Iden results of CircDA is very small, which 

Fig. 3  Performance comparison of CircDA with existing models. A AUROC values of our proposed CircDA and other basic classification methods 
on four benchmark datasets. B, C The ROC and PR curves of CircDA on the four datasets, respectively. D–G The AUROC values of CircDA and other 
existing methods on Dataset-1, Dataset-2, Dataset-3, and Dataset-4, respectively
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proves the robustness of CircDA. Then, the AUROC of 
CircDA is markedly better than RF and SVM. Compared 
with RF and SVM, the AUROC of ELM, GNN, and rec-
ommendation algorithm has significantly improved, but 
it is also lower than CircDA. This also shows that CircDA 
can predict associations well.

The proposed CircDA outperforms state‑of‑the‑art models
In this section, based on Dataset-1 and Dataset-2, CircDA 
is compared with the most advanced models GMM2CD 
[11], DWNN-RLS [17], KATZHCDA [34], GHICD [12], 
RWRHCD [35], NCPCDA [36], CD-LNLP [37], CircDA-
MF [12], CKA-GRTMF [36], and CKA-HGRTMF [36], 
and the quantitative AUROC results of each method are 
shown in Fig. 3D, E  (the results of the compared meth-
ods are obtained from the literature). For Dataset-3 
and Dataset-4, the algorithms GMNN2CD, KATZH-
CDA, iCDA-CGR, NSL2CD, DeepDCR, GCNCDA, and 
AUROC were reproduced using the code shared by the 
literature. GCNCDA based on deep learning fast learning 
and graph convolutional network; DWNN-RLS based on 
regularized least squares method; KATZHCDA based on 
enhanced induction matrix completion; CD-LNLP based 
on nearest neighbor label propagation; NSL2CD based 
on network embedding and subspace learning recogni-
tion; MRLDC integrated computing framework; Deep-
DCR based on deep learning. The results are shown in 
Fig. 3F, G.

In Fig.  3D–G, the CircDA method outperforms other 
advanced predicting methods on both datasets. CircDA 
performed best in FFCV, with AUROC values of 0.9716, 
0.9703, 0.9607 and 0.9465. The performance of CircDA 
based on the GMNNs is significantly better than that of 
the traditional collaborative filtering recommendation 
algorithms ICFCDA, iCDA-CGR, DWNN-RLS, KATZH-
CDA, RWRHCD, CD-LNLP, and NSL2CD and better 
than that of MRLDC and DeepDCR, which are based 
on intelligent optimization algorithms and mathematical 
statistical model label learning methods. Since GMNNs 
can exploit object properties to propagate labels in a non-
linear manner, they have a good ability to model label 
correlations. Compared with GCNCDA based on GCN, 
CircDA has obvious advantages. First, during the reason-
ing process, CircDA employs GNN to learn useful object-
associated representations to improve reasoning ability. 
During the learning process, GNN is used to model local 
label dependencies. Furthermore, the predictive ability 
is further improved by including target attributes in the 
learned network, which demonstrates that CircDA can 
flexibly and efficiently add extra features to the learned 
network. Second, compared to GMNN2CD, our model 
CircDA has also been improved, which proves that it 
is necessary to consider biological network data. The 

effectiveness of the CircDA model built in this section is 
demonstrated by comparing it with existing methods.

Case validation based on experimental results 
in the literature
To verify the performance of CircDA in predicting 
unknown associations, a case study of three cancers was 
conducted based on Dataset-4. Case studies in the litera-
ture include two types: case studies with known associa-
tions and case studies with unknown associations.

Case analysis of diseases with known associated circRNAs
The known associations are first applied to train CircDA. 
Next, disease-associated circRNAs are predicted using 
the trained model. After that, all candidate circRNAs are 
ranked according to the obtained prediction scores of all 
circRNAs. Finally, the predicted associations were vali-
dated by searching newly published literature.

HCC is the most common malignancy worldwide. 
Accumulating evidence shows that circRNAs promote 
the growth of HCC cells. Therefore, we decided to verify 
the predictive performance of CircDA on HCC (Fig. 4A). 
Thirty circRNAs associated with HCC were included in 
the database, and 15 of the top 20 candidates were con-
firmed by the literature.

Cervical cancer (CC) is the most common gynecologi-
cal malignancy. Studies have shown that circRNA plays a 
vital role in the occurrence of CC. Figure 4B lists the 20 
circRNAs associated with CC with the highest prediction 
scores. CircDA predicted 16 out of 18 confirmed cervical 
cancers. Thus, we verified that CircDA has good predic-
tive ability.

Case analysis of diseases with unknown associated circRNAs
To verify the predictive performance of CircDA for dis-
eases without known associated circRNAs, taking gastric 
cancer (GC) as an example, we first deleted all circRNA 
data associated with gastric cancer in the database then 
used the remaining circRNA-disease association data to 
train CircDA, and finally used the trained model to pre-
dict gastric cancer. The association scores with circRNAs 
were sorted, and the predicted top 20 circRNAs were 
verified. The results are shown in Fig. 4C. Among the top 
20 circRNAs, 16 have been verified, and the 4 unverified 
circRNAs are also expected to be verified in future bio-
logical experiments.

RT‑qPCR case validation of human HCC tissue samples
For experimental verification, we removed the circRNAs 
included in the database and then selected the top ten 
circRNAs for RT-qPCR experimental expression analy-
sis. Based on the prediction data of CircDA about HCC, 
and removing the confirmed circRNAs in Dataset-4, 
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and the top ten circRNAs (hsa_circRNA_104135, 
hsa_circRNA_102347, hsa_circRNA_400031, hsa_
circRNA_103096, hsa_circRNA_103809, hsa_cir-
cRNA_100571, hsa_circ_0002577, hsa_circRNA_100338, 
hsa_circRNA_102032, hsa_circ_0000520) were selected. 
These ten circRNA molecules are circRNAs not included 
in Dataset-4. Then, to identify specifically expressed 
circRNAs between HCC patients and normal indi-
viduals, we performed RT-qPCR on six tissue samples 
from HCC patients and control non-tumor tissue sam-
ples. We counted the expression of these ten groups 
of circRNAs in HCC and matched non-tumor tissue 
samples from patients. The results of paired sample 
mean/test analysis (Fig.  5) displayed that the expres-
sion of hsa_circRNA_104135, hsa_circRNA_400031, 

hsa_circRNA_103809, hsa_circRNA_100571, and hsa_
circRNA_102032 in the six tissue samples were higher in 
HCC tissues than in paired paracancerous tissues. There 
was a statistically significant difference in the expres-
sion levels (p < 0.05). There was no significant difference 
between hsa_circRNA_102347 and hsa_circ_0000520 
among the three tissue samples, and the other three 
showed higher expression levels in paracancerous tissues 
than in HCC tissue samples. hsa_circRNA_103096 had 
significant expression differences in the first five sam-
ples; the expression level of HCC tissue samples in the 1st 
and 2nd samples was higher than that of paracancerous 
tissues, and the opposite was true in the other samples. 
The RT-qPCR results of the sixth tissue samples of hsa_
circ_0002577 and hsa_circRNA_100338 were abnormal, 

Fig. 4  The prediction results of CircDA are verified based on the case analysis of the literature. A–C Twenty circRNAs predicted by CircDA 
on Dataset-2 related to HCC, CC, and GC, respectively
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so this group of data is not counted. In the 1st and 5th 
samples of hsa_circ_0002577, the expression of the HCC 
tissue samples were higher than that of the paracancer-
ous tissues, there was no significant difference in the 3rd 
sample, and the expression level of the paracancerous 
tissues was higher than that of the cancerous tissues in 
the other several samples. In the first sample of hsa_cir-
cRNA_100338, the expression level of the HCC tissue 
sample was higher than that of the paracancerous tissues, 
the situation was reversed in samples 2–4, and there was 
no difference in the 6th sample.

RT-qPCR analysis revealed that hsa_circRNA_104135, 
hsa_circRNA_400031, hsa_circRNA_103809, hsa_cir-
cRNA_100571, and hsa_circRNA_102032 maintained 
statistical significance between HCC cell lines and nor-
mal tissue samples. This proves that the prediction of the 
CircDA is reliable and can provide guidance for more 
circRNA disease function exploration, but more experi-
mental verification may be needed. However, this model 
also provides a convenient way to subsequently verify the 

functions of specific biomolecules and provides guidance 
for the study of circRNA molecular functions.

Web server
A web server with a friendly graphical user interface was 
created to share the constructed CircDA models among 
researchers. The interface takes circRNA sequences as 
input and returns the predicted diseases associated with 
it, where the recommended results are shown with the 
top five scores. At the same time, to facilitate local offline 
prediction, one can download the trained CircDA model 
and Python code. In addition, the website has a database 
function, and users can browse and download relevant 
data.

Conclusions
In this work, based on rich multisource biological data, 
we develop a DL model combining variational algorithms 
and graph autoencoders. First, CircDA constructs het-
erogeneous features for multisource biological data. 

Fig. 5  Experimental verification of ten circRNAs associated with HCC predicted by CircDA on human samples. A–J Ten circRNA molecules 
differential expression analysis in cancer and paracancerous tissues
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Then, CircDA uses the variable fusion feature infer-
ence network GNNq for feature inference and the label 
propagation network GNNp for label propagation. The 
two graph autoencoders are trained end-to-end using 
the variational EM algorithm. GMNN alternating train-
ing based on variational inference enhances CircDA’s 
ability to obtain efficient high-dimensional representa-
tion. CircDA proposed in this study achieved satisfactory 
results in circRNA-disease association prediction. Finally, 
through RT-qPCR experiments on HCC tissue samples 
and adjacent cancer tissues, five out of ten circRNA mol-
ecules were found to be differentially expressed, verifying 
the prediction ability of the model. At the same time, to 
better share CircDA, a web server was built. In addition 
to having a user-friendly interface and detailed online 
usage documentation, it hosts trained CircDA models 
and Python code that can be downloaded to your local 
computer for command-line use. CircDA can provide a 
reference for the prediction of unknown disease-related 
circRNAs and has certain usability. In addition, for the 
five circRNAs with obvious expression differences found 
in the RT-qPCR experiment, we will conduct literature 
research and then conduct a series of biological experi-
ments on the most obviously different and unstudied cir-
cRNA to study their specific biological functions.

Moreover, there is still much room for improvement in 
circRNA-disease association research. For example, bio-
logical omics data are rich and diverse. We only consid-
ered miRNA and genes but did not consider multiomics 
data to construct a large-scale heterogeneous biomo-
lecular association network with complete structure and 
biological significance. Therefore, exploring how multi-
source omics data affect the function of circRNA mole-
cules may be an important direction for future work.

Methods
Human circRNA‑disease associations
To evaluate the effectiveness of CircDA, benchmark 
datasets, commonly used as “gold standard” datasets, 
were used. To compare the effect of CircDA with those 
of state-of-the-art methods, we chose four benchmark 
datasets originally proposed by CircR2Disease (612 
associations, 533 circRNAs, and 89 diseases) [38] and 
Circ2Disease (649 associations, 589 circRNAs, and 
88 diseases) [39]. In addition, other circRNA-disease 
databases (circAtlas [40] and CircFunBase [41]) were 
included; in total, there were 930 associations (848 cir-
cRNAs and 110 diseases) and 2984 associations (2597 
circRNAs and 67 diseases). CircR2Disease, Circ2Dis-
ease, circAtlas, and CircFunBase databases contain 
experimentally verified circRNA-related diseases, and 
we directly downloaded the corresponding data from 

the database. After unifying the circRNA names and 
deleting non-human circRNA/disease, 4 datasets were 
obtained, which were denoted as Dataset-1, Dataset-2, 
Dataset-3, and Dataset-4. That is, datasets of this study 
S = {Dataset− 1, Dataset− 2, Dataset− 3, Dataset− 4}  . 
Datasets can be downloaded from web server (http://​
server.​malab.​cn/​CircDA) and GitHub (https://​github.​
com/​nmt31​5320/​CircDA.​git).

We define an association matrix AǫRcm∗Dn to repre-
sent the association of circRNAs with diseases, where 
A(ci, dj) = {0, 1}.

CircRNA’s number is Cm , and the disease’s number is Dn.

Human circRNA‑miRNA‑disease interaction network
In biological signaling regulatory network pathways, 
the interactions between circRNAs and miRNAs are 
often pathogenic. If a disease is associated with que-
rying circRNA-bound miRNAs, then the disease may 
also be associated with circRNAs [42]. In this study, 
miRNA-circRNA interactions were collected from 
NPInter v4.0. Due to the limited experimentally verified 
circRNA-miRNA interactions, the classic algorithm 
miRanda was used to predict potential relationships 
with circRNA and miRNA. The data of circRNA and 
miRNA were extracted from circBase and miRBase 
databases, respectively. Associations between miRNAs 
and diseases, which were experimentally validated, 
were then collected from the HMDD3.2 database [43]. 
We collected 17,844 circRNA-miRNA associations (585 
circRNAs and 640 miRNAs) and 1883 disease-miRNA 
associations (88 diseases and 462 genes).

Human circRNA‑gene‑disease associations
Modern medicine has proved that human diseases are 
directly or indirectly related to genes. Gene mutations 
can cause a variety of diseases, and circRNAs regulate 
gene expression by competitively binding to miRNAs. 
Therefore, circRNAs that interact with disease-caus-
ing genes may also be associated with target diseases. 
Based on this, a heterogeneous circRNA-gene-disease 
network can be used to measure circRNA-disease asso-
ciations. We downloaded circRNA-gene associations 
and disease-gene associations from http://​cssb2.​biolo​
gy.​gatech.​edu/​knowg​ene/​search.​html. We collected 
487 circRNA-gene associations (585 circRNAs and 418 
genes) and 74 disease-gene associations (88 diseases 
and 61 genes).

(1)

A ci , dj =

1, circRNA is associated with disease

0, circRNA is not associated with the disease

http://server.malab.cn/CircDA
http://server.malab.cn/CircDA
https://github.com/nmt315320/CircDA.git
https://github.com/nmt315320/CircDA.git
http://cssb2.biology.gatech.edu/knowgene/search.html
http://cssb2.biology.gatech.edu/knowgene/search.html
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Learning embedding features of circRNA and disease
Since there are few experimentally verified associations 
between circRNAs and diseases, the correlation matrix 
of these two variables is sparse. MD can well capture 
the shared and complementary information of differ-
ent data sources, has the ability to resist noise and data 
heterogeneity, and can reduce the complexity of high-
dimensional data. A high-dimensional matrix can be 
decomposed into two low-rank matrices whose product 
is close to the original correlation matrix [17].

Based on the association matrix A, this paper uses 
MD by expressing circRNA and disease embedding 
matrices C and D with latent factors. Then, the value 
of CDT approximates the association matrix A, which is 
expressed as:

where C ∈ Rm×k , the ith row is the embedding of cir-
cRNA Ci; D∈Rn×k, and the jth row is the embedding of 
disease Di.

Using statistical learning theory, by constructing 
an objective function so that the total approximation 
error should be as small as possible, the two embedding 
matrices C and D obtained satisfy formula (2). Then, to 
avoid overfitting, a regularization term L is added to 
the objective function. Therefore, the objective func-
tion is defined as:

The update process for C and D is as follows:

Then, based on a layer of CNN, the latent features 
obtained by the MF are mapped to different spaces to 
obtain feature combinations.

CircDA with graph Markov neural networks (GMNN) 
for circRNA‑disease association predictions
CircDA uses GMNN to build prediction algorithms. 
GMNN is a DL algorithm that combines feature infer-
ence and label propagation. Variational inference and 
DL methods were used to propose a structure based 
on CircDA [44]. Variational inference includes E-step 
and M-step. The GMNN framework is proposed by our 
work in 2022 [11].

(2)A ≈ CDT

(3)min
C ,D

(
1

2
�A− CDT�

2
F + α�L�2F + α�D�2F )

(4)min
D∈Rn×k

J1(D) = (
1

2
�A− CDT�

2
F + α�D�2F

(5)min
C∈Rm×k

J2(C) = (
1

2
�A− CDT�

2
F + α�C�2F

To predict circRNA-disease associations, we define a 
graph G = (N ,E, fN ) , where N is the node set, E is the 
edge set, and fN  is the node attribute set. The goal is 
to get unknown labels yU based on some of the known 
labels yC(C ∈ N  ). The CircDA framework includes two 
graph autoencoders, namely, GNNq for feature reason-
ing and GNNp for label propagation and uses the E-step 
and M-step of the variational inference algorithm to 
alternately execute GNNq and GNNp to achieve effec-
tive optimization.

The variational inference algorithm is implemented 
by minimizing the losses Lq and Lp of GNNq and 
GNNp, respectively. As in other variational GCNs, Lq 
consists of the reconstruction error Lqr and divergence 
LKL , and Lp consists of the reconstruction error Lpr and 
popularity loss Lm . Lq and Lp are defined as follows:

After calculating the losses Lp and Lq of the two 
graph autoencoders, it is of importance that inte-
grate information of the circRNA space and the dis-
ease space. Therefore, we cotrain GNNqc and GNNqd. 
Defining Zc and Zd as the representations learned in 
circRNA and disease space, respectively, the cotraining 
loss Lc, which measures the performance of cotraining, 
is defined as follows:

where Lqc and Lqd denote the losses of GNNqc and 
GNNqd calculated by Eq. (6), respectively. Since Lm and 
Lc depend on the computation of GNNqc and GNNqd, 
the effects of manifold constraints and co-training are 
related to the effectiveness of GNNq in capturing rep-
resentations. Therefore, the hyperparameter β should 
be increased as the training progresses to enhance the 
robustness of representation learning and the conver-
gence of the EM algorithm. Therefore, in CircDA, we set 
β = e/epoch in the eth epoch, where epoch stands for the 
total number of epochs. Likewise, the total loss of GNNp 
is:

(6)Lq = Lqr + LKL

(7)Lqr =
1

2
||x − x′| |2F

(8)LKL = −
∑

i,j

1

2
(1+ 2logσi,j − µ2

ij − σ 2
ij )

(9)Lp = Lpr + Lm

(10)Lpr = −
∑

i,j
YijlogFij

(11)Lq = αLqc + (1− α)Lqd + βLc
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where Lpc and Lpd denote the losses of GNNpc and 
GNNpd, respectively.

After the training, Fc ( FcǫRm×n ) and Fd ( FdǫRm×n ) are 
the outputs of GNNpc and GNNpd, respectively. Fc and 
Fd are low-rank matrices computed by autoencoders:

Then the final output result F is:

Performance evaluation
We use fivefold cross-validation (FFCV) to evaluate 
the performance of CircAD. Among them, the evalua-
tion indicators are the area under the receiver operating 
characteristic curve (AUROC) and the area under the 
precision-recall curve (AUPR) [45–50]. AUROC is widely 
employed to evaluate the ability of binary classifiers, and 
the horizontal axis is the vertical axis. AUPR is the area 
under the PR curve, which is plotted with a true positive 
rate (TPR) as the horizontal axis (a higher TPR indicates 
that the model can predict more data) and precision as 
the vertical axis (a higher precision indicates that the cor-
rectness of the predicted samples is higher).

HCC specimens
After the prediction model CircDA is constructed, we 
predict the circRNAs related to HCC. According to the 
ranking of the prediction results, remove the circRNAs 
included in Dataset-4 and get the top ten circRNA mol-
ecules. These circRNAs may have been underwritten by 
experiments and databases, or they may not be verified 
by experiments. We then collected human HCC tissue 
samples for RT-qPCR validation.

In 2022, researchers from the first hospital of Tongji 
Medical College of Huazhong University of Science and 
Technology in Wuhan collected cancer tissues and paired 
adjacent non-cancerous tissues from six patients with 
primary HCC. Six pairs of HCC samples (tumor tissue 
and matched non-tumor tissue) were used for circRNA 
microarray analysis. All tissue samples were taken during 
the operation and immediately frozen at 80 °C for subse-
quent experiments. Pathologists evaluated patients’ liver 
specimens and determined their clinical stage of HCC 
according to the BCLC classification. The following HCC 
patients were excluded: (1) patients aged 18 or 70 or 
without full capacity for civil conduct; (2) patients with 
a history of anticancer radiotherapy or chemotherapy, 
biology, immunization, or traditional Chinese medicine 

(12)Lp = αLpc + (1− α)Lpd

(13)
rank(aFc + bFd) ≤ rank(Fc)+ rank

(

FT
d

)

, ∀a, b

(14)F = αFc + (1− α)FT
d

before surgery; (3) postoperative patients with incom-
plete follow-up data; and (4) patients with a history of 
other organ malignancies or systemic immune diseases. 
Written informed consent was obtained from each par-
ticipant prior to tissue collection. The study protocol was 
approved by the Clinical Research Ethics Committee 
of Tongji College, Huazhong University of Science and 
Technology, Wuhan.

RNA extraction, cDNA synthesis, and RT‑qPCR
Following the manufacturer’s instructions, we extracted 
total RNA from cells using TRIzol Reagent (Invitrogen, 
Carlsbad, CA, USA) and treated with RQ1 DNase (Pro-
mega, Madison, WI, USA) to remove DNA. The spe-
cific steps of RNA extraction are as follows: (1) take the 
cell pellet, add 1 ml TRIzol to fully homogenize, and let 
stand at room temperature for 5 min; (2) add 0.2 ml of 
chloroform, shake vigorously for 15 s, and let stand for 
3 min; (3) centrifuge at 4 °C, 12,000 rpm × 10 min, and 
take the supernatant; (4) add 0.5 ml of isopropanol, mix 
well, and let stand on ice for 20–30 min; (5) centrifuge 
at 4 °C, 12,000 rpm × 10 min, and discard the superna-
tant; (6) add 1 ml of 75% ethanol, wash the precipitate at 
4 °C, 7500 rpm × 5 min, and discard the supernatant; and 
(7) dry at room temperature for about 5 min and add an 
appropriate amount of RNase-free H2O to dissolve.

Following the kit manufacturer’s instructions (TOY-
OBO Life Science, Shanghai, China), we used the Rever-
Tra Ace qPCR RT Kit to perform reverse transcription 
reactions and measure the gene expression levels. Among 
them, each tissue sample was subjected to RT-qPCR 
amplification in triplicate. First, 1 μg of total RNA was 
reverse-transcribed into cDNA, and the steps and sys-
tem were carried out according to the instructions. Then, 
using cDNA as a template, RT-qPCR internal reference 
gene actin primers were used for RT-qPCR amplification 
(the sequences and primer sequences of ten circRNAs 
included within its Additional files 1 and 2) to verify the 
quality of cDNA. The reaction conditions of RT-qPCR 
include three kinds: cycle at 95 °C for 1 min, cycle at 95 
°C for 15 s, and cycle at 60 °C for 30 s. The final results 
were calculated relative gene expression as 2−ΔΔCt and 
normalized.
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