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Abstract 

Background Due to interindividual variation in the cellular composition of the human cortex, it is essential 
that covariates that capture these differences are included in epigenome-wide association studies using bulk tis-
sue. As experimentally derived cell counts are often unavailable, computational solutions have been adopted 
to estimate the proportion of different cell types using DNA methylation data. Here, we validate and profile the use 
of an expanded reference DNA methylation dataset incorporating two neuronal and three glial cell subtypes 
for quantifying the cellular composition of the human cortex.

Results We tested eight reference panels containing different combinations of neuronal- and glial cell types 
and characterised their performance in deconvoluting cell proportions from computationally reconstructed or empir-
ically derived human cortex DNA methylation data. Our analyses demonstrate that while these novel brain decon-
volution models produce accurate estimates of cellular proportions from profiles generated on postnatal human 
cortex samples, they are not appropriate for the use in prenatal cortex or cerebellum tissue samples. Applying our 
models to an extensive collection of empirical datasets, we show that glial cells are twice as abundant as neuronal 
cells in the human cortex and identify significant associations between increased Alzheimer’s disease neuropathol-
ogy and the proportion of specific cell types including a decrease in NeuNNeg/SOX10Neg nuclei and an increase 
of NeuNNeg/SOX10Pos nuclei.

Conclusions Our novel deconvolution models produce accurate estimates for cell proportions in the human cortex. 
These models are available as a resource to the community enabling the control of cellular heterogeneity in epige-
netic studies of brain disorders performed on bulk cortex tissue.
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Background
Recent years have seen acute interest in the role of epige-
netic variation in the pathogenesis of disease. Although a 
number of different epigenetic mechanisms are involved 
in transcriptional regulation, the field of epigenetic epi-
demiology has focused primarily on DNA methylation 
(DNAm). DNAm can be quantified genome-wide using 
a commercial microarray [1, 2], making it cost effective 
to profile the large sample numbers required to detect 
statistically robust associations [3]. Unlike genetic asso-
ciation studies, the choice of tissue for profiling epige-
netic variation is a critical part of the study design for 
epigenome-wide association studies (EWAS). As the epi-
genome orchestrates the gene expression changes under-
pinning cellular differentiation, genome-wide patterns 
of DNAm are primarily defined by the tissue or cell type 
that the DNA sample originates from [4–7]. Therefore, a 
major caveat of profiling DNAm in samples isolated from 
‘bulk’ tissue (e.g. whole blood or brain tissue) is that each 
is comprised of DNA from a heterogeneous mix of differ-
ent cell types, with the resulting profile being an aggre-
gate of each constituent cell type.

To date, most epigenetic datasets have been gener-
ated on DNA samples isolated from bulk tissues [8]. 
As the proportion of each cell type within a sample can 
vary across individuals, systematic differences in cellular 
proportions that correlate with the phenotype of inter-
est (e.g. pathology-associated changes in the abundance 
of a specific cell type) may manifest as differences in the 
overall epigenetic profile [9]. For example, Alzheimer’s 
disease is characterised by extensive neuronal loss [10, 
11] in conjunction with glial cell activation and prolif-
eration in the cortex [12, 13]. A previous study using an 
isotropic fractionator to quantify the cellular composi-
tion of the brain of both healthy controls and Alzheimer’s 
disease patients detected not only significant changes in 
the number of neurons between the groups but reported 
dramatically different percentages [14]. While the cortex 
of the healthy controls had on average 38% neurons and 
62% non-neurons, the Alzheimer’s disease patients had 
a mean of 23% neurons and 77% non-neurons. Adjust-
ing analyses with quantitative covariates that capture 
the cellular composition of each sample has been widely 
adopted as the solution for minimising false positives. As 
experimentally derived cell counts are often not avail-
able, computational solutions have been proposed as an 
alternative.

These computational solutions are often referred to 
as deconvolution algorithms, due to their objective of 
identifying the constituent elements from a heteroge-
neous sample. They are not related to convolutional 
neural networks. Deconvolution algorithms calculate a 

series of continuous variables reflecting the underlying 
cellular heterogeneity of each sample from the bulk tis-
sue profile. Deconvolution algorithms can be separated 
into two classes—supervised methods (known as ‘ref-
erence-based’ algorithms) [15–21] and unsupervised 
methods (known as ‘reference free’) [22–25].

Reference-based methods in particular have been 
successfully used to control for cellular heterogene-
ity in DNAm studies of whole blood [26]. However, 
because this approach requires reference DNAm pro-
files for each constituent cell type of interest, they are 
not applicable to the study of all tissues. Similarly, 
although reference profiles exist for deconvoluting cel-
lular proportions from DNAm data generated on bulk 
cortex tissue, these are currently limited to estimat-
ing the abundance of neuronal and non-neuronal cells 
[17]—and do not capture the full complexity or diver-
sity of cell types present in the brain [27, 28]. We and 
others have recently developed experimental protocols 
using Fluorescence-Activated Nuclei Sorting (FANS) 
to purify populations of nuclei from multiple cell types 
in post-mortem human cortex tissue [29–31]. These 
methods have enabled us to refine the non-neuronal 
(predominantly glial) cell population and generate ref-
erence DNAm profiles for oligodendrocyte, microglia, 
and astrocyte nuclei that can be used for the cellular 
deconvolution of DNAm data generated on bulk cortex.

In this study, we profile the use of these novel cell 
reference datasets in conjunction with the widely 
used Houseman deconvolution algorithm [16]—a con-
strained projection methodology—for quantifying the 
cellular composition of the human cortex. First, we 
validate the use of these reference data with compu-
tationally simulated ‘bulk’ cortex profiles, where the 
proportion of different cell types is predetermined. 
Second, we apply these reference panels to empirical 
DNAm datasets generated from bulk cortex tissue sam-
ples to profile how deconvolution performance, as well 
as cellular composition, varies across brain regions and 
development. Finally, we demonstrate how the quan-
tification of these refined brain cell types can be used 
as phenotypic variables for detecting known cellular 
changes associated with neuropathology in Alzheimer’s 
disease. To enable the wider research community to 
incorporate our novel cellular composition estimates 
into their workflow, our enhanced reference panels are 
available via the R CETYGO [32] package on GitHub. 
Beyond the estimation of cell-type proportions in the 
human cortex, our analyses provide broader insights 
into the methodology of cellular deconvolution that 
are applicable for studies involving other cell types and 
tissues.
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Results
Further refinement of neural cell types confirmed 
with distinct genome‑wide DNAm profiles
We used a FANS protocol previously described by our 
group [33] to purify nuclei populations from prefrontal 
cortex tissue dissected from 43 adult donors. Our ini-
tial gating strategy used an antibody against NeuN (a 
robust marker of post-mitotic neurons [34]) to isolate 
neuronal nuclei in combination with an antibody against 
SOX10 (a transcription factor involved in the differen-
tiation of oligodendrocytes [35]) to distinguish oligoden-
drocyte nuclei from other glial nuclei (Additional File 
1: Supplementary Figure1A). Subsequently, in a second 
gating strategy, we additionally included an antibody 
against IRF8 (a transcription factor that is upregulated in 
microglia [36]) to enrich microglia from the NeuNNeg/
SOX10Neg fraction (Additional File 1: Supplementary 
Figure  1B). Our third gating strategy used an antibody 
against SATB2 (a DNA binding protein involved in tran-
scriptional regulation and chromatin remodelling which 
is expressed in excitatory neurons in the mature central 
nervous system [37]) in place of NeuN (Additional File 
1: Supplementary Figure 1C). We generated DNAm pro-
files using the Illumina EPIC array for NeuNPos (neuron 
enriched; n = 28), NeuNNeg/SOX10Pos (oligodendrocyte 
enriched; n = 24), NeuNNeg/SOX10Neg (microglia and 
astrocyte enriched; n = 21), NeuNNeg/SOX10Neg/IRF-
8Pos (microglia enriched; n = 17), NeuNNeg/SOX10Neg/
IRF8Neg (astrocyte enriched; n = 7), SATB2Pos (excita-
tory neuron enriched; n = 9) and SATB2Neg (inhibi-
tory neuron and glial enriched; n = 6) nuclei populations 
(Additional File 2: Supplementary Table 1 & 2). To con-
firm that cell-type differences were the primary drivers of 
variation in DNAm across samples, principal component 
(PC) analysis was used (Additional File 1: Supplementary 
Figure 2). The first PC, which explains 43.2% of the vari-
ance in DNAm, separates the NeuNPos fractions (Neu-
NPos and SATB2Pos) from the other nuclei populations. 
The second PC, which explains 28.8% of the variance, 
separates the NeuNNeg/SOX10Neg/IRF8Pos samples 
from the NeuNNeg/SOX10Neg/IRF8Neg samples, with 
NeuNNeg/SOX10Neg samples, the parent fraction, in 
between these extremes. While the third PC, which 
explains 3.7% of the variance, does highlight differences 
between nuclei fractions, this does not correlate with any 
of the antibodies we used to isolate specific cell types. It 
appears to capture a difference between the NeuNNeg/
SOX10Neg and the NeuNNeg/SOX10Neg/IRF8Pos frac-
tions with NeuNNeg/SOX10Neg/IRF8Neg sitting in the 
middle. This could indicate that there is another cell type, 
which we have not isolated, characterised as NeuNNeg/
SOX10Neg/IRF8Neg that is lost during the IRF8 gating 
but retained in the NeuNNeg/SOX10Neg fraction. All 

subsequent PCs, which each explain < 3% of the variance, 
do not correlate with a specific nuclei population and 
therefore likely reflect technical or biological sources of 
variation in DNAm between samples.

In order to increase the specificity of brain cell types 
in our subsequent deconvolution analyses, we aug-
mented our data with publicly available data from the 
EpiGABA [38] study in which the NeuNPos nuclei popu-
lation is further refined using an antibody against SOX6 
[39] (Additional File 1: Supplementary Figure 1D) using 
the Illumina 450  K array to generate NeuNPos/SOX-
6Pos (GABAergic neuronal enriched; n = 4), NeuNPos/
SOX6Neg (glutamatergic neuronal enriched; n = 3), and 
NeuNNeg (glial enriched; n = 4) nuclei populations iso-
lated from occipital cortex tissue. PC analysis of this 
combined dataset (123 samples from 47 donors; Fig.  1) 
showed that PC1 (explaining 39.9% of the variance) 
still separates neuronal and non-neuronal nuclei, with 
the NeuNPos/SOX6Pos and NeuNPos/SOX6Neg clus-
tering with the NeuNPos and SATB2Pos samples and 
the NeuNNeg clustering with the other glial fractions. 
PC2 (explaining 23.9% of the variance) still separates 
NeuNNeg/SOX10Pos from NeuNNeg/SOX10Neg/IRF-
8Pos, with NeuNNeg samples located in between these 
extremes reflecting the fact that this population contains 
nuclei from both of these subfractions. PC3 (explaining 
11.7% of the variance) separates the two sets of data and 
likely reflects technical differences (e.g. different array 
types and other experimental batch effects). These results 
highlight that the major cell-type differences in DNAm 
are highly reproducible across data generated in different 
laboratories and dominate over batch effects and inter-
individual differences. We therefore decided that for the 
purposes of generating the most extensive set of cellular 
composition estimates, we would merge our data with 
the EpiGABA DNAm data into a single dataset.

Accuracy of cellular composition estimation depends 
on the combination of cell types included in the reference 
panel
Given the large number of nuclei fractions included in 
our final DNAm reference dataset, some of which target 
overlapping cell populations due to the different FANS 
gating strategies used, we defined 8 different combina-
tions of cell types to serve as reference panels for the 
deconvolution of cellular composition of cortical DNAm 
data (Table 1, Additional File 1: Supplementary Figure 3). 
Six of these represent mostly complete, non-overlapping 
and increasingly refined combinations, whereby any 
given cell type should be contained within a single frac-
tion. These enabled us to characterise how deconvolution 
performance was affected by increasing the specificity of 
cellular composition. Two of the panels (4 and 5), contain 
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overlapping fractions (SATB2Pos and NeuNPos), that 
both capture excitatory neuronal nuclei. These panels 
were included to observe how the algorithm handles this 
direct conflict.

To compare the performance of the different panels, 
we performed a series of simulations where we could 
contrast predicted composition against a known truth 
(Additional File 1: Supplementary Figure  4). Briefly for 
each panel, we held one sample of each nuclei fraction 
back, and  selected the sites for deconvolution using 
all other samples for that fraction. We then used the 
excluded sample to construct bulk brain DNAm profiles 
where we combined cell-specific profiles in a weighted 
linear sum of pre-specified proportions of each cell type 
(see ‘Methods’). As well as comparing 8 different com-
binations of cell types, for panels with > 2 fractions, we 
also compared two methods, ANOVA and IDOL (IDen-
tifying Optimal Libraries) algorithm [20], for selecting 
cell-specific sites that are the basis of the algorithm. In 
total 15 different training models were considered in the 
Houseman constraint projection deconvolution meth-
odology [16] using these learnt parameters to estimate 
the cellular composition of a bulk profile. Overall accu-
racy of the deconvolution was captured by two metrics, 
the CETYGO score [32], which quantifies the accu-
racy of cellular deconvolution where the true cellular 

composition is unknown, and root mean square error 
(RMSE), which requires the cellular composition to be 
known.

In general, each reference panel combination yielded 
highly accurate estimates of cell proportions (average 
CETYGO score < 0.10 using either ANOVA or IDOL) with 
performance being comparable across the different panels 
and site selection methods (Fig. 2, Additional File 1: Supple-
mentary Figure 5, Additional File 2: Supplementary Table 3). 
For each reference panel, we performed the deconvolutions 
with increasing numbers of cell-specific sites but found 
that this had little effect on the accuracy of the deconvolu-
tion (Additional File 1: Supplementary Figure 6, Additional 
File 1: Supplementary Figure 7). Marginally the best panel, 
measured by both the CETYGO score and RMSE, was 
panel 6 (NeuNPos/SOX6Pos, NeuNPos/SOX6Neg, NeuN-
Neg). Of note, the separation of the NeuNNeg/SOX10Neg 
fraction into NeuNNeg/SOX10Neg/IRF8Pos and NeuN-
Neg/SOX10Neg/IRF8Neg (e.g. comparing panel 1 with 
panel 2) was associated with a slightly lower CETYGO 
score, indicative of a composition profile that captured more 
of the variation in the bulk tissue. This was generally also 
true of the separation of the NeuNPos fraction into Neu-
NPos/SOX6Pos and NeuNPos/SOX6Neg fractions (e.g. 
comparing panel 2 with panel 8) although not ubiquitously 
the case. In contrast, more refined cellular deconvolution 
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Fig. 1 Major axes of variation in DNA methylation data are driven by cell type. Scatterplot (a) of the first two principal components where each 
point represents a sample (n = 123 samples from 47 donors) and the colour of the point indicates the nuclei fraction. Violin plots for the first 
5 principal components (b–f) grouped by nuclei fraction (sample sizes can be found in Additional File 2: Supplementary Table 1). DoubleNeg 
(NeuNNeg/SOX10Neg; n = 21), IRF8Pos (NeuNNeg/SOX10Neg/IRF8Pos; n = 17), NeuNNeg (NeuNNeg; n = 4), NeuNPos (n = 28), SATB2Neg (n = 6), 
SATB2Pos (n = 9), SOX6Neg (NeuNPos/SOX6Neg; n = 3), SOX6Pos (NeuNPos/SOX6Pos; n = 4), Sox10Pos (NeuNNeg/SOX10Pos; n = 24), TripleNeg 
(NeuNNeg/SOX10Neg/IRF8Neg; n = 7)
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models (i.e. incorporating more cell types) were associated 
with a slightly higher RMSE (Additional File 1: Supplemen-
tary Figure 5) indicating that although the inclusion of more 
cell types gives a better representation of the variation in 
a bulk tissue, the estimates of the individual fractions are 
associated with a higher degree of error. We also observed 
this pattern when comparing the reference panels that con-
sist of both SATB2Pos and NeuNPos (panels 4 and 5).

Looking more specifically at the accuracy of estimating 
the proportion of particular nuclei fractions, we observe 
noticeable variation in the degree of accuracy (Fig.  3, 
Additional File 2: Supplementary Table 4, Additional File 
1: Supplementary Figures  8–15). Some cell types per-
formed consistently accurately, regardless of which refer-
ence panel was used. Furthermore, we could group cell 
types based on their summary statistics. As described 
above, the accuracy of estimating the proportion of Neu-
NPos and SATB2Pos nuclei was dramatically reduced in 
the two reference panels (4 and 5) where they were both 
included and therefore all subsequent analyses focused on 
panels were either one or the other was used. The top per-
forming cell fractions with near perfect estimates included 
NeuNPos, NeuNNeg, NeuNPos/SOX6Pos, and NeuNPos/
SOX6Neg (all r ≥ 0.99 and RMSE ≤ 0.02, Additional File 2: 
Supplementary Table  4). NeuNNeg/SOX10Neg, NeuN-
Neg/SOX10Neg/IRF8Pos, SATB2Pos, and SATB2Neg are 
associated with marginally larger errors but still perform 
well with r ≥ 0.92 and RMSE ≤ 0.06. Of note, the NeuN-
Neg/SOX10Pos fraction showed the most variation across 
panels. When included in a panel where the NeuNNeg/

Table 1 Summary of nuclei fractions included in the reference 
panels

Panel Included fractions Number of samples

1 NeuNPos
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg

28
24
21

2 NeuNPos
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg/IRF8Pos
NeuNNeg/SOX10Neg/IRF8Neg

28
24
17
7

3 SATB2Pos
SATB2Neg

9
6

4 NeuNPos
SATB2Pos
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg

28
9
24
21

5 NeuNPos
SATB2Pos
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg/IRF8Pos
NeuNNeg/SOX10Neg/IRF8Neg

28
9
24
17
7

6 NeuNPos/SOX6Pos
NeuNPos/SOX6Neg
NeuNNeg

4
3
4

7 NeuNPos/SOX6Pos
NeuNPos/SOX6Neg
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg

4
3
24
21

8 NeuNPos/SOX6Pos
NeuNPos/SOX6Neg
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg/IRF8Pos
NeuNNeg/SOX10Neg/IRF8Neg

4
3
24
17
7
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Fig. 2 Accurate and increasingly refined estimation of cellular composition of the cortex from DNA methylation profiles. Violin plots of the error, 
measured by the CETYGO score, associated with estimating the cellular proportions of reconstructed cortical brain profiles. Panels represent 
different combinations of nuclei populations, as defined in Table 1, with reconstructed cortical profiles generate to capture the full spectrum 
of cellular heterogeneity (n = 90–1260). For reference panels with more than two cell types, two methods were used to select the cell-specific sites 
that serve as the basis for the algorithm represented by different violins
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SOX10Neg fraction was replaced with the NeuNNeg/
SOX10Neg/IRF8Pos and NeuNNeg/SOX10Neg/IRF8Neg 
fractions, this had a dramatic effect on the accuracy of 
NeuNNeg/SOX10Pos estimates, with the correlation sta-
tistic (r) decreasing from ~ 0.95 to ~ 0.7 and the RMSE 
doubling from ~ 0.05 to > 0.1. The best statistics for pre-
dicting the NeuNNeg/SOX10Neg/IRF8Neg fraction come 
from panel 5 (which interesting includes both SATB2Pos 
and NeuNPos) with r = 0.81 and RMSE = 0.09; of note, this 
fraction provides the least accurate prediction metrics. 
Instead considering the (signed) error, we observed that 
some cell types were associated with a particular bias in 
their estimation; for example, both NeuNNeg/SOX10Neg 
(median error = 0—0.02) and NeuNNeg/SOX10Neg/IRF-
8Pos (median error = 0.01 − 0.03) were typically overesti-
mated (Fig. 3, Additional File 2: Supplementary Table 4). 
These results highlight how the accuracy of prediction for 
a given cell type is influenced by which other cell types are 
included in the deconvolution model, even when using a 

non-overlapping reference panel. Additionally, our results 
indicate that the accurate estimation of one cell type in a 
panel does not necessarily mean that the proportions of 
other cell types in that panel are also well estimated. A 
natural consequence of these conclusions is that to get the 
most precise estimates of a diverse set of cell types, differ-
ent reference panels may need to be utilised in parallel. All 
these analyses were repeated using the IDOL method for 
selecting cell-specific sites for deconvolution, and there 
was no clear evidence that one method for selecting cell-
specific prediction sites outperformed the other (Fig.  3, 
Additional File 1: Supplementary Figure 5).

Technical variation influences the accuracy of cellular 
deconvolution
Having demonstrated that our new reference panels for 
cellular deconvolution are capable of calculating accu-
rate estimates of cellular composition in the cortex, 
we used them to calculate estimates in two large bulk 

Panel
Panel 1

Panel 2

Panel 3

Panel 4

Panel 5

Panel 6

Panel 7

Panel 8

−0.6 −0.3 0.0 0.3 0.6
Predicted − Actual

DoubleNeg

−0.6 −0.3 0.0 0.3 0.6
Predicted − Actual

IRF8Pos

−0.6 −0.3 0.0 0.3 0.6
Predicted − Actual

NEUNNeg

−0.6 −0.3 0.0 0.3 0.6
Predicted − Actual
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−0.6 −0.3 0.0 0.3 0.6
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SATB2Neg

−0.6 −0.3 0.0 0.3 0.6
Predicted − Actual
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−0.6 −0.3 0.0 0.3 0.6
Predicted − Actual

Sox10Pos

−0.6 −0.3 0.0 0.3 0.6
Predicted − Actual

TripleNeg

Fig. 3 Accuracy and bias differs across cell types when estimating the cellular composition of the cortex. Violin plots of the error associated 
with estimating the cellular proportions of reconstructed cortical brain profiles, measured as the difference between predicted and actual 
abundance, where a positive value indicates an overestimation. Panels collate results for the same cell type, within each panel, values are grouped 
by reference panels, as defined in Table 1. For each reference panel reconstructed cortical profiles were generated to capture the full spectrum 
of cellular heterogeneity (n = 90–1260)
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DNAm datasets generated using adult prefrontal cor-
tex tissue. The first dataset (the ‘Exeter’ dataset) incor-
porates a number of datasets generated by our group 
(n = 377, age range = 19–108 years old) [40–44] and the 
second represents a publicly available dataset described 
by Jaffe et al. (n = 415, age range = 18–97 years old) [45]. 
Profiling the accuracy of the deconvolution using the 
CETYGO score highlighted that all panels performed 
well (mean CETYGO < 0.10), with reference panel 6 
(NeuNPos/SOX6Pos, NeuNPos/SOX6Neg, NeuNNeg) 
being associated with the lowest scores (Additional File 
1: Supplementary Figure  16) consistent with the simu-
lation results. This was closely followed by panels 7 
(NeuNPos/SOX6Pos, NeuNPos/SOX6Neg, NeuNNeg/
SOX10Pos, NeuNNeg/SOX10Neg) and 8 (NeuNPos/
SOX6Pos, NeuNPos/SOX6Neg, NeuNNeg/SOX10Pos, 
NeuNNeg/SOX10Neg/IRF8Pos, NeuNNeg/SOX10Neg/
IRF8Neg), with the other 5 panels performing similarly. 
Of note, CETYGO scores were strongly correlated across 
panels (Additional File 1: Supplementary Figure 17), sug-
gesting that regardless of reference panel, there are other 
important influences on the accuracy of the estimates, 
such as data quality.

Subsequently, testing for biological or technical factors 
that influence the accuracy of cellular deconvolution we 

found that the CETYGO score was significantly associ-
ated with batch (Fig. 4A) in both datasets, across all ref-
erence panels (Additional File 2: Supplementary Table 5). 
There was a significant effect (P < 3.3 ×  10−3 corrected for 
15 training models) of sex on the CETYGO score for 4 
models in the Exeter dataset and 10 models in the Jaffe 
dataset (Additional File 2: Supplementary Table 5). In all 
cases, females were associated with a slightly lower aver-
age error (Additional File 1: Supplementary Figure  18) 
especially when the ANOVA method was used to select 
cell-specific sites (11/14 significant associations), despite 
more male samples being included. Of note, there was no 
association with age or age squared on prediction accu-
racy in either dataset (Additional File 2: Supplementary 
Table 5).

Neural cellular deconvolution panels derived from adult 
cortical samples do not effectively capture cellular 
heterogeneity in the cerebellum or foetal DNAm datasets
While our reference profiles were generated from 
populations of nuclei isolated from prefrontal and 
occipital cortical tissue, they are potentially relevant 
for estimating the proportion of the same cell types 
in other brain regions, especially other regions of the 
cortex. We performed cellular deconvolution using 
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DNAm profiles from an additional 851 samples (age 
range = 19–108  years old) [40–43, 46, 47] generated by 
our group from 9 other brain regions including addi-
tional cortical regions, the striatum, the hippocam-
pus, and cerebellum (Additional File 2: Supplementary 
Table  6). These analyses showed that the CETYGO 
scores in cerebellum samples are dramatically elevated, 
indicating that the cellular composition estimates for 
this tissue are unlikely to be accurate (Fig.  4B, Addi-
tional File 1: Supplementary Figure  19). It is known, 
for example, that the predominant neuronal subtype 
in the cerebellum (Purkinje cells) do not express NeuN 
[48]. We also observe subtle differences in performance 
between the other 8 regions, although the distribution of 
CETYGO scores largely overlap with those observed in 
the prefrontal cortex (Additional File 2: Supplementary 
Table 7).

We also wanted to confirm whether our reference pan-
els were suitable for use in samples from donors at earlier 
stages of development. To this end, we used 167 prenatal 
and childhood DNAm profiles generated from bulk cor-
tex samples by our group (age range = 23 days post con-
ception − 17  years old) [40, 49]. We found consistently 
elevated CETYGO scores in the prenatal samples regard-
less of the specific developmental stage, comparable with 
those seen in the cerebellum samples (Fig. 4C, Additional 
File 1: Supplementary Figure 20) suggesting that bespoke 
reference panels are required to estimate cellular propor-
tions in prenatal cortex tissues. The distribution of post-
natal childhood and adolescent samples CETYGO scores 
are comparable to adult scores. Of interest, reference 
panel 3 has the smallest difference between prenatal and 
postnatal CETYGO scores reflecting the fact that SATB2 

is a more robust marker of neuronal cells than NeuN in 
the prenatal cortex [50].

Variable abundance of neuronal and glial cells in the adult 
prefrontal cortex
While there has been a fair degree of interest in profil-
ing the cellular heterogeneity of the brain, variation in 
study design and methodologies have made it challeng-
ing to harmonise existing fields into a single estimate 
for the cortex [51]. Confident that we can derive accu-
rate estimates of cellular proportions in the adult cor-
tex, we used our novel reference panels to characterise 
the cellular composition of the adult cortex using both 
datasets. In order to make inferences about the rela-
tive proportions of different subtypes of neurons and 
glial cells, we limited these comparisons to the esti-
mates derived from reference panel 8, which contained 
the most specific combination of cell fractions using 
the IDOL method to select cell-specific sites. Plotting 
the distribution of cellular composition, we observe 
high levels of interindividual variation (Fig.  5, Table  2) 
across the samples. Glial cells were more abundant than 
neuronal cells (Exeter: mean neuronal proportion 0.34 
(SD = 0.06) vs mean glial proportion 0.68 (SD = 0.07), 
Jaffe: mean neuronal proportion 0.31 (SD = 0.06) vs 
mean glial proportion 0.71 (SD = 0.07)). Within the 
neuronal cells, NeuNPos/SOX6Neg were more abun-
dant on average (Exeter: mean = 0.301 (SD = 0.06), Jaffe: 
mean = 0.30 (SD = 0.06)) than NeuNPos/SOX6Pos cells 
(Exeter: mean = 0.03 (SD = 0.02), Jaffe: mean = 0.01 
(SD = 9.9 ×  10−3)). Within the glial cells, the NeuN-
Neg/SOX10Pos were most abundant on average (Exe-
ter: mean proportion = 0.27 (SD = 0.15), Jaffe: mean 
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proportion = 0.30 (SD = 0.13)) followed by the NeuNNeg/
SOX10Neg/IRF8Neg (Exeter: mean proportion = 0.24 
(SD = 0.09), Jaffe: mean proportion = 0.23 (SD = 0.08)). 
NeuNNeg/SOX10Neg/IRF8Pos was the least abundant 
predicted fraction ((Exeter: mean proportion = 0.17 
(SD = 0.04), Jaffe: mean proportion = 0.18 (SD = 0.03)). 
The broad consistency across datasets in these relative 
abundance estimates supports the notion of an aver-
age predetermined ratio of brain cells to underpin brain 
function but that this is highly variable across individuals. 
It is, therefore, important to quantify cellular composi-
tion accurately for the purposes of controlling for poten-
tial confounding and they  may indeed be an interesting 
phenotype themselves in the study of brain development 
and brain disease.

Exploring this further, we were interested if there were 
any biological factors associated with the variation in cellu-
lar composition we observed. To streamline these analyses, 
we selected the optimal reference models for estimating 
the composition of each cell fraction (Additional File 2: 
Supplementary Table 8), noting that correlations between 
fractions across panels were very high (Additional File 1: 
Supplementary Figure 21). Testing the proportion of each 
cell type against age and sex, the only association that 
survived multiple testing in both datasets (P < 5 ×  10−3, 
corrected for 10 cell types) was a higher proportion of 
NeuNPos/SOX6Pos cells in males (Exeter mean differ-
ence in males = 2.3 ×  10−3, P = 5.8 ×  10−5; Jaffe mean differ-
ence in males = 6.5 ×  10−3, P = 7 ×  10−5) (Additional File 2: 
Supplementary Table  9; Additional File 1: Supplementary 
Figures 22–25).

The degree of Alzheimer’s disease neuropathology 
is associated with DNAm‑derived estimates of neuronal 
and glial composition
Finally, we were interested in whether the added specific-
ity of our cellular composition estimates could enhance 
our understanding of the neuropathology of Alzhei-
mer’s disease using data from recent analyses of DNAm 

differences associated with tau and amyloid pathology 
using bulk cortex [31]. We estimated cellular proportions 
for each of the 10 fractions across three datasets where 
DNAm had been profiled in bulk prefrontal cortex tis-
sue samples (total N = 864; Additional File 2: Supple-
mentary Table 10) [31, 43, 44]. To ensure our subsequent 
analysis of cellular proportions were not biased, we first 
tested whether increasing tau pathology (quantified by 
Braak stage) influences the accuracy of cellular decon-
volution. Although all models showed the same trend of 
decreasing CETYGO scores associated with increasing 
neurofibrillary tau tangles (Additional File 2: Supplemen-
tary Table 11), only the CETYGO scores from reference 
panel 3 (mean change per Braak stage =  − 9.1 ×  10−4, 
P = 8.2 ×  10−5) were significantly related to pathology 
(P < 3.3 ×  10−3, corrected for 15 models). We found a 
significant association (P < 5 ×  10−3, corrected for 10 cell 
types) for the prevalence of two estimated cell fractions 
with increasing levels of Alzheimer’s disease pathol-
ogy (Fig.  6, Additional File 2: Supplementary Table  12). 
These data detected a decrease in the proportion of 
NeuNNeg/SOX10Neg nuclei (mean change per Braak 
stage =  − 4.6 ×  10−3, P = 1.7 ×  10−3), and an increase in 
the proportion of NeuNNeg/SOX10Pos nuclei (mean 
change per Braak stage 0.07, P = 5.6 ×  10−4) with increas-
ing tau pathology. There were also trends for significant 
negative correlations between the proportions of NeuN-
Pos nuclei (mean change per Braak stage =  − 2.8 ×  10−3, 
P = 9.9 ×  10−3), SATB2Pos nuclei (mean change per 
Braak stage =  − 3.7 ×  10−3, P = 5.7 ×  10−3) and NeuNPos/
SOX6Pos (mean change per Braak stage =  − 1.1 ×  10−3, 
P = 7.6 ×  10−3) and a trend for a positive correlation with 
NeuNNeg (mean change per Braak stage = 3.6 ×  10−3, 
P = 6.5 ×  10−3).

Discussion
We have generated genome-wide DNAm profiles for 
different cell types isolated from human cortex tissue, 
including novel profiles for several glial subtypes. We 

Table 2 Summary of proportions of cell types in the adult prefrontal cortex

Cell types Exeter Jaffe

Mean SD Mean SD

Neuronal All 0.336 0.0628 0.309 0.0582

NeuNPos/SOX6Neg Excitatory (glutamatergic) neuronal enriched 0.306 0.0557 0.295 0.0555

NeuNPos/SOX6Pos Inhibitory (GABAergic) neuronal enriched 0.0303 0.0155 0.013 0.0099

Glial All 0.683 0.0723 0.711 0.0692

NeuNNeg/SOX10Neg/IRF8Pos Microglia enriched 0.169 0.0388 0.175 0.0289

NeuNNeg/SOX10Pos Oligodendrocyte enriched 0.274 0.153 0.305 0.133

NeuNNeg/SOX10Neg/IRF8Neg Astrocyte enriched 0.241 0.0928 0.232 0.0807
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have demonstrated that these are applicable for use with 
established deconvolution algorithms and can be used 
to estimate cellular proportions in the cortex and other 
regions of the human brain from bulk DNAm data. Our 
proposed reference panel for deconvolution is the most 
extensive available for the human cortex and enables the 
prediction of neurons and glia, in addition to the predic-
tion of two neuronal subtypes (excitatory and inhibitory) 
and three glial subtypes (oligodendrocytes, microglia and 
astrocytes). We demonstrate that this approach produces 
accurate and informative estimates of cellular propor-
tions from DNAm profiles generated using adult bulk 
human cortex samples but is not appropriate for the use 
in prenatal or cerebellum samples for which bespoke ref-
erence panels will be required.

The first brain-specific deconvolution panel for DNAm 
analyses was the CETs algorithm, which compares an 
observed bulk brain DNAm profile to a series of pro-
files representing a gradient of neuronal to non-neuronal 
cells and identifying via F-statistics the optimal fit to the 
observed data [17]. While the underlying algorithm was 
not adopted widely, the reference data of NeuNPos frac-
tions and NeuNNeg fractions have been repurposed for 
use with Houseman’s reference-based algorithm [9]. The 
primary limitation for the field though was the limited 
content of the reference panels to just two major classes 
of brain cell types.

In parallel to our work, another group collated publi-
cally available reference data from multiple studies for 
seven cell types to train a deconvolution model for brain 
[52]. The HIBED algorithm includes the same five cell 

types that we isolated, although there are differences in 
how the samples for the reference profiles of the glial 
cells were obtained. The HIBED astrocyte profile was 
generated from a human primary cell line, the micro-
glia profile was obtained using density gradient separa-
tion and while the oligodendrocyte sample was isolated 
using a FANS protocol like ours, they used a different 
antibody OLIG2. Variation in the isolation process likely 
explains why we observe different relative abundances of 
the glial subtypes. Our panel is overall, more homogene-
ous, with the reference profiles for all cell types generated 
using the same experimental technique, from an overlap-
ping set of donors and using a consistent technology to 
quantify DNAm. Furthermore, as all our cell fractions 
are obtained from human post-mortem brain tissue, we 
believe that they are more representative of cells in the 
bulk brain profiles we are trying to derive the cellular 
composition of. Considering this, we would expect that 
our panel should lead to more accurate estimates of cel-
lular heterogeneity.

Previous efforts to characterise the cellular composi-
tion of the human brain has produced a wide range of 
estimates, especially where the ratio of different cell types 
is concerned. This is in part due to the use of different 
methodologies, but perhaps more critically, due to the 
study of different brain regions and variation in whether 
the assay was limited to just the grey matter, white matter 
or both [51]. Our data could prove valuable in synthesis-
ing the existing research into a coherent conclusion.

We observed approximately twice as many glial cells 
relative to neuronal cells, in line with the previously 
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Fig. 6 Cellular composition of adult prefrontal cortex varies as a function of Alzheimer’s disease neuropathology. Violin plots of the distribution 
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reported glial to neuronal ratio for cortical tissue consist-
ing of both white and grey matter [51]. Of neuronal cells, 
we found that the proportion of GABAergic (inhibitory) 
neurons in the order of 5–10%, a bit lower compared 
to published literature stating this is between 10 and 
20% [53]. This is not to be unexpected given the use of 
the SOX6 antibody, which is known to miss some sub-
classes of GABAergic neurons such as calbindin + corti-
cal neurons. Within non-neuronal cells, we found that 
oligodendrocytes were the most frequent glial subtype, 
representing ~ 40% of glial cells, followed by astrocytes 
(~ 35%) and then microglia (~ 25%). The rank order-
ing of abundance of glial subtypes is broadly consistent 
with the existing literature, although the estimated pro-
portions differ, with a lower than expected proportion of 
oligodendrocytes and higher than expected proportion of 
microglia.

We should caveat that our analysis of computationally 
constructed bulk profiles highlighted that the estimation 
of microglia proportion is better than the estimation of 
oligodendrocyte proportion and the estimation of astro-
cyte proportion is worst. Furthermore, it is plausible that 
our reference profiles derived from positively selected 
fractions do not capture the full spectrum of cells tar-
geted. For example, SATB2 may have different efficien-
cies in isolating external and internal cortical layers and 
IRF8 may preferentially stain for microglia responding 
to local inflammatory signals. Critically, our data high-
light large variation in the composition of different cell 
types across samples, consistent with previous decon-
volution studies of brain [17, 52] and studies of cellular 
heterogeneity using other methods [51], reinforcing the 
importance of including these variables as covariates in 
association analyses [9].

As well as being potential confounders, there is inter-
est in using these variables as phenotypes in epidemio-
logical studies to identify the sources of the variation. 
We tested for effects of age and sex, and only found 
nominal associations between sex and one cell type, 
inhibitory neurons. To establish the biological validity 
of these cellular composition variables, we tested them 
against semi-quantitative measures of Alzheimer’s dis-
ease neuropathology in existing datasets generated by 
our group [31, 43, 46]. Our data was consistent with 
the known neuropathological effects of neuronal loss 
observed with the progression of Alzheimer’s disease 
[10, 11, 54], highlighting a decrease in the proportion 
of neurons observed in both inhibitory and excitatory 
neurons.

We also detected changes in the composition of glial 
cells with the proportion of oligodendrocytes increasing 
and the proportions of microglia and astrocytes decreas-
ing as tau tangles accumulate in the brain. This finding 

does not contradict reports that astrocytes and micro-
glia exhibit enhanced activity in Alzheimer’s disease [12, 
13, 55]. Cellular deconvolution harnesses sites in the 
genome where there are cell-specific DNAm signatures 
that define cell identity (i.e. ubiquitous across all cells of 
that type) and likely does not capture changes in activa-
tion state (which potentially varies across a population of 
cells). One of the limitations of the methodology is it only 
allows us to determine cellular proportions rather than 
abundances. Given that the proportion of one cell type is 
influenced by the abundance of all cell types, significant 
associations with the proportion of an individual cell type 
might not be due to changes in the abundance of that cell 
type but changes in the overall composition. For this rea-
son, caution needs to be applied when interpreting sig-
nificant associations with these variables.

Given the use of four different FANS gating strategies 
to obtain different populations of nuclei, we had refer-
ence data for 10 different fractions of brain cell types, 
where some of these fractions targeted overlapping sets 
of nuclei. For this reason, we were able to propose 8 dif-
ferent ways to combine these data into reference panels 
for cellular deconvolution, with 6 of these reference pan-
els consisting of non-overlapping fractions of nuclei. This 
is therefore, the most comprehensive study to date inves-
tigating how the composition of different reference pan-
els affects the estimation of cellular heterogeneity. While 
our novel reference panel is primarily of interest to those 
studying variable DNAm in brain disorders, our analyses 
provide broader insights into the methodology of cellu-
lar deconvolution that are applicable for studies involving 
any bulk tissue.

It is reasonable to assume that the optimal reference 
panel would have the most diverse and specific set of 
cell types available, and our data demonstrate subtle 
improvements in accuracy when using models that con-
tain a more specific set of subtypes. In addition to com-
paring different reference panels, we also compared two 
methods for selecting cell-specific sites (i.e. how the 
deconvolution model itself is trained) using an ANOVA 
or the IDOL algorithm [20], although this did not intro-
duce much variation in performance. We note, however, 
the IDOL algorithm is designed to leverage external, 
known cellular composition estimates, which we did not 
have available. Instead we used in silico reconstructed 
profiles of fixed proportions, which might have limited 
the potential gains of this iterative methodology akin to a 
competitive learning algorithm.

We found larger differences in performance between 
cell types and between reference panels than between 
training methodologies. We conjecture that this is due 
to variation in the quality of the reference data for each 
cell type, which is affected by both the signal-to-noise 
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ratio of the DNAm array data and the efficiency of the 
isolation of those cell types. We were able to classify 
the different fractions into three performance tiers. 
The top tier with near perfect performance in our 
simulations included NeuNPos (neuronal enriched), 
NeuNPos/SOX6Pos (GABAergic neuronal enriched), 
NeuNPos/SOX6Neg (glutamatergic neuronal enriched) 
and NeuNNeg (glial enriched). The next tier, also asso-
ciated with high accuracy statistics, included NeuN-
Neg/SOX10Neg (microglial and astrocyte enriched), 
NeuNNeg/SOX10Neg/IRF8Pos (microglial enriched), 
SATB2Pos (excitatory neuronal enriched) and SAT-
B2Neg (inhibitory neuronal and glial enriched). The 
third tier included NeuNNeg/SOX10Pos (oligoden-
drocyte enriched) and NeuNNeg/SOX10Neg/IRF8Neg 
(astrocyte enriched) which were associated with a 
noticeable drop in performance metrics. While they 
likely still function as valuable proxies for variation in 
composition associated with these cell types, they are 
potentially affected by more noise, which will nega-
tively affect the power to detect between-sample differ-
ences with these cell types.

We expected that positively selected fractions (i.e. 
where an antibody is used to isolate a subset of nuclei) 
would be associated with a  higher degree of accuracy 
than negatively selected fractions (i.e. the population of 
unstained nuclei) due to increased levels of heterogene-
ity. This was not always the case, with the NeuNNeg/
SOX10Neg fraction predicted more accurately than 
NeuNNeg/SOX10Pos fraction. Even within a purified 
population of nuclei, there is likely to be a heterogeneous 
mixture of different cellular subtypes and the extent of 
this heterogeneity will vary depending on the class of cell 
types and the activation state of any given cell.

Another factor influencing the accuracy of the esti-
mates of particular cell types is the availability of 
DNAm sites in the dataset that differentiate cell types. 
As has been shown for cell types in whole blood [56], 
our data confirmed that the magnitude of differences 
between brain cells is largely a function of their lineage. 
In other words, the major source of variation in these 
data was captured differences between the two major 
classes of brain cells, neurons and glial. The subsequent 
lower-order sources of variation then captured the dif-
ferences within these classes (e.g. astrocytes from oli-
godendrocytes). Interestingly, microglia, which arise 
from an entirely different lineage compared to the other 
brain cell types, sit within the glial cluster. There are 
fewer (and smaller) differences between more devel-
opmentally related cell types to harness for deconvolu-
tion, making the analysis more difficult. This highlights 
a potential limitation of using microarray technology; 
having genuinely genome-wide DNAm data would 

likely be an advantage for or even essential for further 
resolving the cellular heterogeneity of the brain further 
into more specialised cell types.

When characterising the performance of estimates of 
cellular composition, there are two statistical proper-
ties to consider. First is the absolute accuracy, which is 
important if the objective is to make inferences about 
the cellular profile of the brain. Second is the ability to 
capture a gradient of variation, i.e. the correlation. This is 
important if the aim is to test for associations with other 
phenotypes or use as covariates in analyses. When decid-
ing which set of cellular composition variables to use, it 
is worth considering what they are going to be used for. 
If the objective is to test for associations between each 
cell type and an outcome (or adjusting for this variation) 
then it would be logical to select the most accurate esti-
mate for each cell type, even if this means using different 
models for different cell types. The consequence of this 
approach is that the sum across all the cell types will not 
total 1.

When comparing the performance of different refer-
ence panels, we have demonstrated how our accuracy 
metric for cellular deconvolution, CETYGO [32], can be 
applied. Our results reinforce the conclusions from the 
original work that the parameters of the distribution of 
the CETYGO score are reference panel and technology 
specific. The association in the analyses between batch 
and accuracy highlight that data quality are important 
not only for increasing power to detect significant effects 
with an outcome, but also to effectively capture cellular 
heterogeneity. We therefore recommend that not only 
do future studies take advantage of our expanded set of 
brain cell-type composition variables, but that they also 
include the CETYGO score as part of their quality con-
trol process to identify outlier samples.

Conclusions
In summary, we have generated an expanded set of refer-
ence data for the purpose of estimating the cellular het-
erogeneity of DNAm profiles generated from bulk human 
cortex tissue. These variables will be critical covariates 
to include in future epigenetic studies of brain disorders 
to minimise the risk of false positive associations and 
improve our understanding of the changes in the brain 
that underpin the development of psychiatric disorders 
and neurodegenerative diseases.

Methods
Isolation of neural nuclei from post‑mortem brain tissue
Post-mortem prefrontal cortex (PFC) samples were pro-
cessed using our optimised FANS protocol [33]. PFC 
post-mortem brain tissue from 43 adult donors (aged 
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55–95 years old) was provided from 9 brain banks from 
the UK, Canada and USA (Brains for Dementia Research 
Network of Brain Banks, King’s College London, Har-
vard, UCLA, Oxford, Miami, Douglas Bell, Pittsburgh 
and Mount Sinai Brain Banks). Human cortex tissue was 
collected under approved ethical regulation at each cen-
tre and transferred to our care through Materials Trans-
fer Agreements.

Five hundred milligrams of frozen brain tissue was 
homogenised in lysis buffer (2  mL) using a pre-chilled 
Dounce homogeniser. The homogenate was layered 
above 8  mL of sucrose solution in ultracentrifuge tubes 
(Thermo Scientific, Cat N# 03699) (1 mL per tube) and 
overlaid with a lysis buffer (2  mL per tube) for a final 
volume of 11  mL. Following the purification of nuclei 
by density gradient ultracentrifugation (model: Sorvall™ 
WX 80 + ; rotor: TH-641; speed: 108,670.8 × g, 45 min at 
4 °C), each nuclei pellet was resuspended in 1 mL stain-
ing buffer and incubated on ice for 10  min. Nuclei sus-
pensions were then pelleted in a 2-mL Eppendorf tube 
(DNase, RNase free) by centrifugation at 1000 × g, 5 min 
at 4 °C. After carefully discarding the supernatant, nuclei 
pellets were resuspended in fresh staining buffer and 
pooled together. After adding 2 µL of DNA dye (Hoechst 
33342, Abcam, Cat # ab228551), 150µL of nuclei solu-
tion (Hoechst only) was transferred in a new 2-mL tube 
and volume made up to 1 mL with fresh SB for use as the 
Unstained Control. For the “Stained” tube, the volume 
removed was replaced with fresh staining buffer and the 
suspension was then immune-stained with a combina-
tion of antibodies including NeuN-Alexa488, anti-SOX10 
NL577-conjugated, and/or anti-IRF8 APC-conjugated 
antibodies. Details of the three different gating strategies 
we implemented can be seen in Additional File 1: Sup-
plementary Figure  1. Both stained and unstained tubes 
were incubated for 1.5 h on a spinning rotor in the dark 
at 4 °C. Tubes were spun at 1000 × g, for 5 min at 4 °C and 
the supernatant was carefully discarded from both tubes 
and remaining nuclei pellets were re-suspend in stain-
ing buffer (500  µl unstained, 1–1.5  mL stained tube—
dependent on pellet density) using wide bore tips. Tubes 
were brought to the FACS Aria III cell sorter and kept on 
ice for the entire procedure of machine setup and sort-
ing. Nuclei suspensions were assessed for the presence 
of debris by adjusting the gating strategy appropriately 
before proceeding with nuclei capture. The 100-µM noz-
zle was used and the event rate during data acquisition 
and sample collection was kept ≤ 3000 events/s. On aver-
age, for each sorted population, 200,000 nuclei were col-
lected for extraction of genomic DNA.

DNA extraction
Nuclei aliquots were defrosted on ice and 50  mL the 
volume of the aliquots made up to 1 mL with Slagboom 
buffer (SB) (5 mL 10 × STE buffer, 5 mL 5% SDS, 40 mL 
RNase-free DNase-free water). Nuclei were collected and 
stored in FACSFlow buffer, approximately 600µL per tube 
for 200,000 nuclei. One microliter of DNase-free RNase-
A (10  mg/ml) per 500μL of sample was added and the 
samples were incubated at 37 °C for 45 min (heat block). 
Five microliters of proteinase K (20  mg/ml) (Thermo 
Fisher Scientific, Waltham, MA, USA) was then added 
and the samples were inverted at least 10 times. The 
samples were then incubated at 60  °C for 1 h, and then 
cooled to room temperature (RT) for 5  min. Two hun-
dred microliters of “Majik Mix” (a proprietary reagent 
made from 1:1 ratio yeast Reagent 3 (Autogen Bioclear, 
Caine, Wiltshire, UK) and 100% ethanol) was added, and 
the samples were mixed by vigorous inversions before 
being centrifuged at 17,000 × g for 10 min at RT. For each 
sample, the supernatant was carefully recovered and 
transferred to a new labelled tube (50μL was left at the 
bottom of each tube). Another 200μL of Majiik Mix was 
added to each tube, and samples were again mixed by 
vigorous inversion before being centrifuged at 17,000 × g 
for 10 min at RT. The upper layer of each tube was care-
fully recovered (making sure to leave approximately 
50μL to prevent carrying over any of the lower layer) and 
transferred to a new appropriately labelled tube. Where 
exceeding 1  mL total volume, supernatant was equally 
distributed into 2 new tubes. An equal volume of 100% 
Isopropanol (Sigma-Aldrich Corporation, St. Louis, 
MO, USA) was added to each sample (e.g. 1  mL super-
natant + 1  mL 100% Isopropanol) and slowly mixed by 
inverting to precipitate the DNA. At this stage, 0.5–0.8μL 
GlycoBlue™ Co-precipitant (Invitrogen Ltd, Inchinnan, 
UK) was added to each sample. When a typical acetate/
alcohol precipitation is done, the GlycoBlue™ Coprecipi-
tant will precipitate with the nucleic acids, facilitating 
good DNA recovery while increasing the size and visibil-
ity of the pellet. The samples were then mixed by invert-
ing the tubes ~ 10 times and centrifuged at 17,000 × g for 
15  min at RT. For each tube, the supernatant was care-
fully removed and discarded. Five hundred microliters of 
80% ethanol was added to each tube, samples were then 
mixed gently and centrifuged at 17,000 × g for 5  min. 
The supernatant was carefully removed and the pellets 
were left to air dry for 20  min or until dry. Each DNA 
pellet was resuspended in 15µL of RNAse, DNase-free 
water and left at 4  °C overnight to fully dissolve before 
quantification.
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Methylomic profiling
Five hundred nanograms of genomic DNA from each 
sample was treated with sodium BS using the Zymo 
EZ-96 DNA Methylation-Gold™ Kit (Cambridge Bio-
science, UK) according to the manufacturer’s standard 
protocol. All samples were then processed using the 
EPIC 850  K array (Illumina Inc, CA, USA) according 
to the manufacturer’s instructions, with minor amend-
ments and quantified using an Illumina HiScan System 
(Illumina, CA, USA). Individuals were randomised and 
sorted fractions from the same individual and FACs gat-
ing run were processed on the same BeadChip, where 
within a BeadChip the location of each fraction was ran-
domised. In total, 42 NeuNPos, 39 NeuNNeg/SOX10Pos, 
33 NeuNNeg/SOX10Neg, 12 SATB2Pos, 19 NeuNNeg/
SOX10Neg/IRF8Neg, 34 NeuNNeg/SOX10Neg/IRF8Pos 
and 9 SATB2Neg samples were run on the DNAm arrays.

DNAm data preprocessing
DNA methylation data was loaded in R (version 3.6.3) 
from idat files using the package bigmelon [57]. These 
data were processed through a standard quality control 
pipeline which included the following steps: (1) checking 
methylated and unmethylated signal intensities, exclud-
ing samples where this was < 500; (2) using the control 
probes to ensure the sodium bisulfite conversion was 
successful, excluding any samples with median < 80; (3) 
use of the 59 SNP probes to confirm that samples from 
the sample individual were genetically identical; (4) pfil-
ter function from wateRmelon package to exclude sam-
ples with > 1% of probes with detection P-value > 0.05 and 
probes with > 1% of samples with detection P-value > 0.05; 
(5) counting the number of missing values per sample 
and excluding samples with > 2% probes missing.

To confirm the success of the FANS sorting, we applied 
a bespoke classification algorithm based on principal 
components analysis across all autosomal DNA meth-
ylation sites. The general objective was to compare each 
sample to the average profile of the labelled sample type. 
We Studentized the values of the first two principal com-
ponents and excluded those above a threshold of 1.5, to 
minimise the effects of outliers (which are likely to be 
due to either mislabelling or suboptimal FANS sorting) 
on the average profiles for each cell type. For each cell 
type, we then calculated the mean and standard deviation 
(SD) of the first two principal components only includ-
ing the non-outlier samples. These were then used to 
calculate sample level scores that captured the similarity 
of the observed sample and the expected profile for that 
cell type. This was defined as the value of the principal 
component for that sample minus the mean for the cell 
type divided by the standard deviation for the cell type. 

The value can be interpreted as the number of SD from 
the mean that sample is, where lower values are desir-
able. This was performed separately for the first two prin-
cipal components and then combined into a single score 
by taking the maximum, referred to here as the maxSD 
score. Prior to confirming the labelling of individual sam-
ples, we first wanted to confirm at an individual level 
that we had successfully isolated distinct fractions of 
nuclei. For this, we calculated individual-level metrics 
that represents the efficiency of the FANS sort. These 
are defined as the median across all the maxSD scores 
for that individual. Where the FANS sorting worked well 
(i.e. all antibodies were stained and gated accurately), all 
the samples from that individual should be close to their 
relevant average profile and this score will be low. Where 
the FANS sorting for an individual did not successfully 
isolate the relevant cell types, these samples will still be 
heterogeneous mixtures of cells and sit in the middle of 
the principal component space, far away from their aver-
age profile, all with large maxSD. By taking the median, 
we ensure that we focus here on detecting FANS sorts, 
where the separation into specific cell types was not suc-
cessful, rather than instances where just one/two samples 
are affected/mislabelled. Visual inspection of the best and 
worst performing individuals, informed us that a thresh-
old of 5 was appropriate. It is also important to exclude 
these individuals prior to performing the cell type check-
ing at a sample level as it enables us to ensure we have 
high signal-to-noise average profiles for the cell types. 
Having excluded all the samples associated with any 
individual deemed to have inefficient FANS sorting, we 
recalculated the Studentized values prior to recalculat-
ing the cell type means and SD for the first two princi-
pal components. Samples were retained if their principal 
components values were within two standard deviations 
of the mean of their labelled cell type. Samples that were 
more than two standard deviations away from the mean 
in either of the first two principal components were 
excluded from further analyses. Samples were then nor-
malised using the dasen function [58], separately for each 
cell type.

EPIGABA data
DNA methylation data generated with Illumina 450  K 
BeadChip array were downloaded from the Synapse por-
tal (syn7072866) for 5 NeuNPos/SOX6Pos, 5 NeuNPos/
SOX6Neg and 5 NeuNNeg samples. idat files for these 
samples were put through the same quality control pipe-
line described above, and the same classification algo-
rithm was performed to confirm successful isolation and 
high-quality reference data for the purpose of cellular 
deconvolution.
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Merging reference DNA methylation datasets
Our Exeter reference dataset was joined to the EpiGABA 
reference dataset. Given the use of two different technol-
ogies, we filtered to sites common to both the EPIC array 
and 450K array. Prior to training any deconvolution mod-
els, these datasets were filtered to only include autosomal 
DNAm sites and remove cross-hybridising probes and 
SNP probes as defined in publicly available resources [59, 
60].

Generation of deconvolution models and selection 
of cell‑specific sites
Given the range of different cell types we have isolated, 
and the fact that these represent overlapping sets of 
nuclei, we defined 8 different combinations of cell types 
each of which represent a different reference panel 
(Additional File 1: Supplementary Figure  3). To test 
and compare the performance of these panels against a 
known truth, we trained a series of Houseman constraint 
projection deconvolution models using our novel refer-
ence data. These were then tested against reconstructed 
brain tissue DNAm profiles where we combined cell-
specific profiles in a weighted linear sum of pre-specified 
proportions of each cell type. For each simulation, one 
sample for each cell type was removed to generate the 
testing data, and the remaining samples formed the train-
ing data, such that the train and test data consisted of 
distinct sets of samples. It should be noted though that 
they were from the same experimental batch, and plausi-
bly share technical, batch-specific effects. In this frame-
work, training the models essentially means selecting the 
cell-specific sites that form the basis of the deconvolution 
algorithm. We used two different methods to select these 
sites. First, an ANOVA was performed across all samples 
in the training data to identify sites that are significantly 
different (P-value < 1 ×  10−8) between the brain cell types, 
selecting 2N sites per cell type (N hypermethylated and 
N hypomethylated). This is the approach implemented by 
minfi (via the EstimateCellCounts function) [61]. The sec-
ond approach is the IDOL method [20]. This also starts 
with an ANOVA to identify a larger pool of possible cell-
specific sites, in our case the default selection of 150 sites 
per cell type with smallest and largest t-statistics. It then 
tests random subsets of sites to refine this list to a smaller 
set of size M probes such that the optimal performance 
is achieved. To determine whether a particular sub-
set of sites is a better fit than the current best subset, it 
requires a separate set of reconstructed test profiles with 
known cellular composition. These were constructed as 
described below for our testing data but from a sample 
selected at random from the training samples. The effect 
of individual CpGs on the accuracy of the deconvolu-
tion is assessed by comparing the accuracy of estimated 

cellular composition with and without that CpG. CpGs 
that confer a positive effect are then up weighted such 
that they are more likely to be selected in the next ran-
dom subset. The selection of random subset of sites was 
performed a maximum of 300 times. This optimisation 
was performed using the IDOLoptimize() function pro-
vided in the IDOL R package. Note the IDOL method 
is only applicable to reference panels with > 2 cell types. 
Therefore from our 8 reference panels, there were 15 
trained models. For each of these models, we trained 
the models multiple times to select between 20 and 200 
probes per cell type, increasing in units of 20 probes.

Generation of simulated bulk brain profiles
To construct bulk brain profiles for testing, we com-
bined the cell-specific test profiles in fixed proportions 
that represented the full spectrum of possible combi-
nations. Each reference panel was only tested against 
reconstructed profiles consisting of the same cell types. 
Cell-type proportions were increased in 0.1 units, where 
each cell type represented at least 0.1, up to a maximum 
of 0.9 and such that the total of all cell-type propor-
tions equalled 1. As each reference panel consists of 
different numbers of cell types, the possible number of 
reconstructed profiles tested differs by virtue of the dif-
ferent number of combinations possible with that num-
ber of cell types. DNAm levels in the test data at these 
cell-specific sites are then computed into estimates of 
cellular proportions using a quadratic programming 
methodology as described by Houseman [16]. This pro-
cess was repeated for 10 different train-test splits of the 
reference data. This methodology was implemented 
using functions in the CETYGO package [32] which are 
adaptations of functions from the minfi package [61] 
that takes matrices of beta values as input for the train-
ing and testing data.

Training deconvolution models for use with empirical bulk 
brain profiles
To train the deconvolution algorithm for all 15 mod-
els for use with empirical bulk brain datasets, and for 
sharing with the wider research community, we used all 
available samples for each cell type (Additional File 2: 
Supplementary Table 1). Cell-specific sites were selected 
in the same way as above with a total of 100 probes per 
cell type selected (i.e. for a two-cell-type reference panel, 
up to 200 probes were selected). To quantify the accu-
racy of the deconvolution in real data where the true 
cellular composition is unknown, we used our recently 
published metric CETYGO [32] designed specifically for 
this scenario. The CETYGO score captures the differ-
ence between a sample’s observed DNAm profile and its 
expected profile given the estimated cellular proportions 
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and cell-type reference profiles. CETYGO is defined as 
the root mean square error (RMSE) between the bulk 
DNAm profile and the expected profile calculated as 
the sum of the estimated proportions for each of N esti-
mated cell types against the mean DNAm level across 
the M cell-type-specific DNAm sites used to perform 
the deconvolution. By definition, 0 is the lowest value the 
CETYGO score can take and would indicate a perfect 
estimate. Higher values of the CETGYO score are indica-
tive of larger errors and therefore a less accurate estima-
tion of cellular composition. Our previous analyses in 
blood indicate that the majority of good-quality samples 
have a CETYGO score < 0.05 and scores > 0.1 indicate an 
incorrect or incomplete panel of reference cell types has 
been used.

Profiling the performance of neural cell‑type 
deconvolution in empirical datasets
We used four datasets of bulk brain DNAm profiles 
from two sources to further characterise the perfor-
mance of the neural reference panels. The first source 
contains data generated by our group at the University 
of Exeter (www. epige nomic slab. com) across a range 
of projects and includes (i) a dataset of 377 adult PFC 
samples (BA9) [41–44], (ii) a dataset of 851 adult sam-
ples from 9 other brain regions including additional 
cortical regions, the striatum, the hippocampus and 
cerebellum (Additional File 2: Supplementary Table  6) 
[40–44, 47], and 167 prenatal and childhood samples 
[40, 49]. The second source is the publicly available 
data provided by Jaffe et al. [45] and includes 415 adult 
PFC samples. All datasets were processed by our group 
through a standard QC pipeline [31] and were normal-
ised using the dasen function in the wateRmelon pack-
age [62]. Cellular composition was estimated for all 
samples using all 15 models and then selecting the esti-
mates from the best performing models for each cell 
type (Additional File 2: Supplementary Table 8).

In the adult PFC datasets, we used a linear regres-
sion model to test for batch effects (slide) and biologi-
cal (age,  age2 and sex) effects on the CETYGO score. 
P-values for the age,  age2 and sex covariates were taken 
from t-tests of the estimated regression coefficients. 
The P-value for the batch effect was taken from an 
ANOVA comparing with full model to a nested model 
without the batch covariate. In the Exeter adult multi-
tissue dataset, we tested for brain region effects on 
the CETYGO scores using a linear regression model, 
where PFC (BA9) was set to the baseline, so that we 
estimated coefficients and P-values for all other brain 
regions were  relative to the PFC. In this analysis, we 
controlled for age,  age2 and sex but not batch, as data 

generated from different brain regions were run in dif-
ferent batches. To test for effects on cellular compo-
sition, we used the same linear regression models as 
described here for the estimated proportion of each 
cell type in turn.

Testing the associations between cellular composition 
and Alzheimer’s disease neuropathology
We additionally generated estimates of cellular com-
position in three in-house Alzheimer’s disease DNA 
methylation datasets [31, 43, 44], where data had been 
generated from DNA extracted from the PFC (Addi-
tional File 2: Supplementary Table  10). Cellular compo-
sition was estimated for all samples using all 15 models 
and then selecting the estimates from the best perform-
ing models (Additional File 2: Supplementary Table  8). 
We used a linear regression model within each cohort to 
test for associations between Braak stage (modelled as a 
continuous variable) and either the CETYGO score or 
estimated proportion of each cell type, including covari-
ates for age and sex. The estimated coefficients for Braak 
stage and the associated standard errors were then meta-
analysed together using the R package meta [63]. Given 
that we only included three studies, we present only the 
fixed effect results in the main text, but the random effect 
results are also available in the relevant Supplementary 
Tables (Additional File 2).
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