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Abstract 

Background Cell differentiation requires the integration of two opposite processes, a stabilizing cellular memory, 
especially at the transcriptional scale, and a burst of gene expression variability which follows the differentiation 
induction. Therefore, the actual capacity of a cell to undergo phenotypic change during a differentiation process relies 
upon a modification in this balance which favors change‑inducing gene expression variability. However, there are 
no experimental data providing insight on how fast the transcriptomes of identical cells would diverge on the scale 
of the very first two cell divisions during the differentiation process.

Results In order to quantitatively address this question, we developed different experimental methods to recover 
the transcriptomes of related cells, after one and two divisions, while preserving the information about their lineage 
at the scale of a single cell division. We analyzed the transcriptomes of related cells from two differentiation biologi‑
cal systems (human CD34+ cells and T2EC chicken primary erythrocytic progenitors) using two different single‑cell 
transcriptomics technologies (scRT‑qPCR and scRNA‑seq).

Conclusions We identified that the gene transcription profiles of differentiating sister cells are more similar to each 
other than to those of non‑related cells of the same type, sharing the same environment and undergoing simi‑
lar biological processes. More importantly, we observed greater discrepancies between differentiating sister cells 
than between self‑renewing sister cells. Furthermore, a progressive increase in this divergence from first generation 
to second generation was observed when comparing differentiating cousin cells to self renewing cousin cells. Our 
results are in favor of a gradual erasure of transcriptional memory during the differentiation process.
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Background
During cell division, the mother cell endures a period of 
transient instability-the mitosis-which is accompanied 
by dramatic cellular and epigenomic reorganizations 
[1]. The close to equal partitioning of the cellular con-
tent, together with active mechanisms, such as the con-
servation of gene transcription profiles after division by 
chromatin-related epigenetic mechanisms, or the long 
half-life of proteins ensure the overall phenotypic similar-
ity of the sibling cells [2–4]. As a consequence, the result-
ing sister cells regain immediately after the division many 
of the structural and functional features of the maternal 
cell. The phenotypic stability of clonal cell lines is largely 
founded on this phenomenon frequently called “cellular 
memory.”

In the present work, we will focus on transcriptional 
memory defined as the closer proximity in term of 
mRNA content of related cells as compared to randomly 
paired cells. Such a memory is thought to be quite tran-
sient, happening over the course of a few cell divisions 
and is directly related to the maintenance of transient 
cell states. A small number of studies have addressed the 
question of the preservation of this transcriptional mem-
ory through division using different approaches ranging 
from microfluidics combined with scRNA-seq (single-
cell RNA sequencing) [5], to time-lapse microscopy of 
reporter genes expression [6, 7], to a dedicated procedure 
called MemorySeq [8]. Most of those studies have been 
focused on self-renewing cells, such as mouse embryonic 
stem cells or melanoma cell line. In all cases, the authors 
concluded to the existence of a transcriptional memory 
defined by the heritability of gene expression levels in a 
gene-specific manner, extending up to two or more gen-
erations. This transcriptional memory impacts subsets 
of genes called “memory genes,” the expression of which 
is uncorrelated in a population of cells but correlated in 
sister cells. Those genes are highly dependent on the cell 
system used for the investigation. Beyond their actual 
function, the fact that related cells harbor correlated 
expression for those genes is a read-out for this tran-
scriptional memory and demonstrates the existence of a 
constraint imposed to the cells gene expression profile at 
division.

On the other hand, all cellular processes are subject to 
stochastic molecular fluctuations, which favor the decor-
relation of sister cells phenotypes and increase transcrip-
tional heterogeneity in a clonal population of siblings. 
For example, relaxation experiments demonstrated on 
various cell systems that after 2 weeks of culture under 
stable conditions, the expression level of specific genes in 
a selected homogeneous cell clone becomes as heteroge-
neous as it was in the original population the founder cell 
derived from [9]. Moreover, the capacity of a cell clone to 

reconstitute the heterogeneity of the original population 
over time has been observed in many instances in normal 
or pathological cell types [4, 8, 10].

During the process of differentiation, this whole deli-
cate balance between the two opposing forces of the 
stabilizing cellular memory and change-inducing gene 
expression fluctuations has to be somehow revisited. 
Indeed, differentiating cells undergo substantial mor-
phological and functional changes. Although differentia-
tion usually takes place over several cell cycles, there is a 
critical transition period characterized by stochastic gene 
expression and rapid morphological fluctuations. A large 
range of experimental studies have indeed demonstrated, 
that the first step in cell differentiation is the rapid and 
transient increase of the variability in gene expression in 
response to the stimuli inducing the differentiation, both 
in vitro [11–20] and in vivo [21, 22] (Fig. 1A).

An important unresolved question is therefore to 
understand how the dynamic stability and the capacity of 
differentiation are integrated into a single process. In the 
present study, we aimed to investigate the dynamic bal-
ance of stability/instability in dividing cells that undergo 
the first steps of differentiation. To do this, we measured 
the resemblance of the sister cells by comparing their 
transcriptomes.

We formulated 3 hypotheses on the possible evolution 
of transcriptional memory upon differentiation induction 
(Fig.  1B). To illustrate those hypotheses, cells in a self-
renewing state are positioned in a gene expression space. 
Assuming the existence of transcriptional memory in our 
self-renewing cells after mitosis, like in other cell mod-
els, sister cells start in roughly at the same position in 
that space (blue family tree). Then, upon differentiation 
induction (red family tree), we can postulate the follow-
ing three hypotheses:

• The maintenance of memory hypothesis: the tran-
scriptional memory overrules the expression vari-
ability resulting in related cells following roughly the 
same path in the gene expression space toward the 
differentiated state (hypothesis 1), or

• The progressive erasure of memory hypothesis: the 
memory is gradually erased, translated in our pro-
jection to differentiating sister cells starting to follow 
roughly the same path and progressively bifurcating 
from each other, and even more after one more cell 
division (hypothesis 2), or

• The instantaneous erasure of memory hypothesis: 
the variability of gene expression pushes the balance 
and takes over the transcriptional memory, leading 
each differentiating sister cell to follow a completely 
different path from the beginning of the differentia-
tion process (hypothesis 3).
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In order to distinguish between the different scenarios 
cited above, it is necessary to quantitatively evaluate, at 
the single-cell level, the similarity of the gene expres-
sion profiles of sister cells shortly after the division 
under self-renewing versus under differentiation-pro-
moting conditions (Fig. 1C, D). Microfluidic approaches 
are the state-of-the-art methods to address those types 
of questions. For instance, Kimmerling and co-authors 
employed a microfluidic chip that allowed them to cap-
ture individual cells in dynamic traps, enabling the cells 
to divide and subsequently trapping the daughter cells 
in new traps. They compared the transcriptome prox-
imity of two cell types (a mouse lymphocytic leukemia 
cell line L1210 and primary CD8+ activated T cells) 
and concluded that related cells present closer tran-
scriptomics profiles than unrelated cells [5]. Another 
microfluidic approach, coupling imaging and single-cell 
tracking, called TraqSeq and developed by Wehling and 
co-authors was used to question fate-divergence during 

hematopoietic stem cells (HSC) asymmetric divisions 
[26]. However, it is not always possible to access com-
plex microfluidic devices. Another type of approach 
that can be used in this context consists of genetically 
tagging the cells in order to generate genetic barcodes 
which will be passed along progenies [27]. However, 
those methods are sometimes out of reach for some 
primary cells which have quite a short lifespan and can 
be extremely hard to modify genetically.

Therefore, we developed two strategies to isolate cells 
while preserving their precise lineage information after 
one (generation 1) and two (generation 2) divisions, a 
manual one and a FACS-based one. Then, in order to 
assess the genericity and robustness of our findings, 
we compared two different cell differentiation models 
(human CD34+ cells and T2EC-TGFα , TGFβ induced 
erythrocytic cells-chicken primary erythrocytic pro-
genitors) and for the T2EC model two cellular states: 
self-renewing and differentiating. We used two different 

Fig. 1 Representation of the concepts used in this study. (A) Schematic representation of a dynamic differentiation process. If one assumes 
that cells are dots moving in a gene expression space (sphere), then one can represent cells in a 3D (i.e. 3 genes) space. Self‑renewing cells (blue 
cells) display some micro‑heterogeneity, as well as differentiating cells (red cells). The differentiation process is accompanied by an increase 
in cell‑to‑cell variability (i.e. macro‑heterogeneity) that allows the cells to escape locally attractive state and attain a new differentiated state [23–25]. 
(B) Three possible hypotheses on transcriptional memory behavior during a differentiation process (see text for details). (C) The type of genealogical 
information that was made available by dedicated methods in this paper. (D) Schematic description of a memory gene (upper) and a non‑memory 
gene (lower). In the case of a memory gene, the geometric distance between the sister‑cells 1 and 2 is of 2 minus 1, that is 1. The distance 
between the sister‑cells 3 and 4 is of 4 minus 3, that is also 1. The mean distance for the memory gene between all sister‑cells is therefore of 1, 
whereas the mean distance for the non‑memory gene between all sister‑cells is of 2 in this example
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single-cell transcriptomics methods: a highly sensitive 
targeted quantification method, scRT-qPCR (single-cell 
reverse transcription-quantitative polymerase chain reac-
tion), and a whole-transcriptome approach, scRNA-seq.

We obtained qualitatively very similar results using 
the two cell types and the two single-cell measurement 
technologies. First, after one cell division (generation 1) 
in both models, and in both states for the T2EC model, 
we detected a transcriptional memory demonstrated by 
the sister cells displaying more transcriptomic similar-
ity between each other than two randomly selected cells. 
Second, using the T2EC model, which allows to compare 
sister cells induce to differentiate to sister cells in self-
renewing state, we also observed that this transcriptome 
similarity decreased during the differentiation process as 
compared to the self-renewing cells. Interestingly, this 
effect was even more pronounced one division later (gen-
eration 2), when interrogating cousin cells. Altogether, 
our results point toward a gradual loss of transcriptional 
memory during the differentiation sequence.

Methods
Cell culture
Human hematopoietic CD34+ cells were purified from 
umbilical cord blood from three anonymous healthy 
donors. First, mononuclear cells were isolated by density 
centrifugation using Ficoll (Biocoll, Merck Millipore). 
CD34+ cells were then enriched by immunomagnetic 
beads using the AutoMACSpro (Miltenyi Biotec). Cells 
were frozen in 90% fetal bovine serum (Eurobio) 10% 
dimethyl sulfoxide (Sigma) and stored in liquid nitro-
gen. After thawing, cells were grown in prestimulation 
medium made of X-vivo (Lonza) supplemented with pen-
icillin/streptomycin (respectively 100 U/mL and 100 µg/
mL-Gibco, Thermo Fisher Scientific), 50 ng/ml h-FLT3-
ligand (FMS-like tyrosine kinase 3), 25 ng/ml h-SCF 
(stem cell factor), 25 ng/ml h-TPO (human Thrombopoi-
etin), and 10 ng/ml h-IL3 (Miltenyi) final concentration 
as previously described [15]. Cells were cultured in a 
96-well plate at 185,000 cells/mL during 24 h in a humid-
ified 5%  CO2 incubator at 37  ◦ C before proceeding to 
mother cell isolation.

Cell population mortality was assessed by count-
ing dead and living cells from the different time points 
and conditions after Trypan blue staining and using a 
Malassez cell.

T2EC cells were extracted from 19-day-old SPAFAS 
white leghorn chicken’s embryos’ bone marrow (INRA, 
Tours, France). Cells were grown in LM1 medium ( α-
MEM, 10% fetal bovine serum (FBS), 1 mM HEPES, 100 
nM β - mercaptoethanol, 100 U/ mL penicillin and strep-
tomycin, 5 ng/mL TGF-α , 1 ng/mL TGF-β , and 1 mM 
dexamethasone) as previously described [28]. T2EC cell 

differentiation was induced by removing LM1 medium 
and placing the cells into DM17 medium ( α-MEM, 10% 
fetal bovine serum (FBS), 1 mM Hepes, 100 nM β-mer-
captoethanol, 100 U/mL penicillin and streptomycin, 10 
ng/mL insulin, and 5% anemic chicken serum [29]).

Manual strategy for CD34+ sister cell isolation
Mother cells were isolated using a SmartAliquotor (iBio-
Chips). It consists of a polydimethylsiloxane chip divided 
into 100 wells (2 µL per well, 1.8 mm of diameter) con-
nected by microchannels to an insertion hole in the 
center. This system allows to physically isolate cells while 
sharing the same medium. Two hundred microliters  of 
cell suspension at 1000 cells/mL were injected in the 
chip through the injection plug, and cells were randomly 
divided into the wells. Air bubbles were removed with 
sterile tips. Using a standard confocal microscope, wells 
containing lonely cells were listed. Twenty milliliters of 
prestimulation medium (see the “Cell culture” section for 
composition) were added to avoid evaporation, and cells 
were incubated at 37 ◦ C in a humidified 5% atmosphere 
during 24 to 48 h. Listed wells were regularly checked 
with standard confocal microscope to identify cell divi-
sion. Sister cells were manually collected under biological 
safety cabinet to keep sterile conditions and avoid impu-
rities to fall in the culture dish. A micromanipulator con-
nected to a flexible microfluidic capillary filled with PBS 
and ending in a 2-µL glass microcapillary was used. Indi-
vidual collected cells were immediately inserted into 5 µL 
of lysis buffer (Triton 4% (Sigma), RNaseOUT Recom-
binant Ribonuclease Inhibitor 0.4 U/µL (Thermo Fisher 
Scientific), nuclease-free water (Thermo Fisher Scien-
tific), and spikes 1 and 4 (Fluidigm C1 Standard RNA 
Assays)) and kept on dry ice to preserve RNA. Particu-
lar attention has been given to preserve cells integrity. 
Samples were kept at − 20  ◦ C until further scRT-qPCR 
analysis.

FACS‑oriented strategy for T2EC sister cell isolation
Mother cells were stained using CFSE (Cell Trace CFSE 
(carboxyfluorescein diacetate succinimidyl ester) Cell 
Proliferation kit (Thermo Fisher Scientific)); 5 × 105 cells 
were placed in a 60-mm plate in 5 mL of culture medium 
mixed with 5 µL of CFSE at 5 mM (final concentration 
5 µ M) and incubated at 37  ◦ C for 30 min. Cells were 
then centrifuged at 20  ◦ C, 1500 rpm for 5min. Medium 
was discarded, and cells were resuspended in 5 mL fresh 
medium. CFSE-stained mother cells were then isolated 
using the CellenONE X1 (CELLENION) at CELLENION 
core facility (Lyon, France). A gating based only on mor-
phological criteria (diameter, elongation, and circularity) 
was performed to select single living cells. Selected sin-
gle cells were sorted in a 384-well plate containing 10 µL 
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of culture medium (either self-renewing medium LM1 
or differentiation-inducing medium DM17). The plate 
was then kept in an incubator under 5%  CO2, 37 ◦ C for 
at least 20 h to allow one cell division. Each well of the 
384-well plate was manually checked under a regular 
inverted microscope to identify cells that had undergone 
one cell division (presence of cell doublets). Each dou-
blet was then harvested and placed in a FACS polypro-
pylene tube containing 80 µL of warm culture medium. 
Tubes containing cell doublets were kept at room tem-
perature throughout the sorting process and were briefly 
vortex immediately before loading into the sorter. Prior 
settings consisted in analyzing the CFSE positive popu-
lation, the CFSE negative population, and the culture 
medium. No fluorescent signal was ever detected in 
medium or in negative population (Additional file 1: Fig. 
S1A–B self-renewing medium and C–D differentiation 
medium) indicating that only cells of interest ever gave 
CFSE positive signal. Cells were sorted at 20 PSI (pounds 
per square inch) through a 100-µm nozzle on a FACS 
AriaII (BD). Gating was performed on FSC-A/SSC-A to 
capture live cells, SSC-H /SSC-A to capture single cells, 
and CFSE positive cells with yield, purity, and phase mask 
of 32, 0, and 0 respectively. Those parameters were cho-
sen because of the cell density being very low (2 cells per 
tube); the probability of the two cells being in two con-
secutive drops was extremely low. Furthermore, those 
parameters are very conservatives, and thus probability 
of the cell not being sorted is also very low. Cells were 
isolated in 4 µL of lysis buffer in PCR tubes contain-
ing cell barcode primers. Tubes were frozen in dry ice 
directly after sorting to prevent any degradation of the 
samples.

FACS‑oriented strategy for T2EC cousin cell isolation
Fluorescent barcoding for lineage tracing
On the first day, 1 × 106 mother cells were labeled with 
0.5 µM CTV (Cell Trace Violet Cell Proliferation kit 
(Thermo Fisher Scientific)) for 20 min at 37  ◦ C in PBS; 
then, 5 mL of medium was added for 5 min to dilute 
the fluorescent molecules. The cells were centrifuged 
for 5 min at 1500 rpm at 20  ◦ C, resuspended, and then 
separated into 6 tubes (2 × 105 cells per tube) and resus-
pended in 1 mL per tube. Each sample was labeled with a 
different concentration of CFSE (3-point range of 5 µM, 
2.187 µM, and 0.312 µM) plus or minus CTY (10 µM-Cell 
Trace Yellow Cell Proliferation kit (Thermo Fisher Scien-
tific)) for 30 min at 37 ◦ C in PBS. Each condition was cen-
trifuged for 5 min at 1500 rpm at 20 ◦ C and resuspended 
in 1 mL of fresh medium. The different concentrations 
and combinations were optimized so that even after two 
cell divisions, the barcodes will be different enough to 
differentiate the cell clones. Cells were plated in a 6-well 

plate and kept in culture conditions until sorting (in an 
incubator 37  ◦ C, 5%  CO2). Cells were were stored at 
37  ◦ C throughout the sorting process and sorted at 20 
PSI through a 100-µm nozzle on an FACS AriaII (BD). 
The sorting strategy was done using single-labeled cell 
populations (CFSE, CTY, CTV and negative); then, gat-
ing was performed on FSC-A/SSC-A to capture live cells, 
SSC-H /SSC-A to capture single cells, and CTV posi-
tive cells. One cell from each subgroup (6 cells total) was 
isolated in a well of a 96-well plate which contained 500 
non-labeled feeder cells in either self-renewing medium 
or differentiating medium through a-100 µm nozzle with 
yield, purity, and phase mask of 0, 32, and 16 respectively 
(single-cell mask). A well then contained 6 mother cells, 
each one labeled with a unique fluorescent barcode and 
the feeder cells. The plate was then put back in culture 
conditions (in an incubator 37 ◦ C, 5%  CO2).

CTFR (Cell Trace Far Red Proliferation kit (Thermo 
Fisher Scientific)) labeling was performed 20 h after 
mother cell sorting, in the plate, so that the cells had 
time to divide once. The staining was made as hetero-
geneous as possible, thanks to the feeder cells but also 
by using very low concentrations of dye and for a very 
short amount of time. Indeed, 0.37 µM of CTFR (Cell 
Trace Far Red Cell Proliferation kit (Thermo Fisher Sci-
entific)) was added to each sample (in approximately 50 
µL of medium), and then 100 µL of medium was added 
to dilute the dye. The plate was centrifuged for 5 min at 
200G, then 120 µL of medium was removed, and 50 µL of 
new medium added to each labeled well. This heteroge-
neous CTFR staining will allow to discriminate the next 
division meaning within the 4 cousin cells and how they 
are paired two by two. Indeed, each daughter cell will 
receive a unique intensity of CTFR dye which will be dis-
criminating after one more cell division. Cells were kept 
in culture conditions for an additional 20 h (in an incuba-
tor 37 ◦ C, 5%  CO2).

On the third day, after the second division, the content 
of the wells containing the cousin cells were transferred 
into polypropylene FACS tubes and briefly vortexed 
immediately before loading into the sorter. The sorting 
strategy was done using single-labeled cell populations 
(CFSE, CTY, CTV, CTFR and negative); then, gating 
was performed on FSC-A/SSC-A to capture live cells, 
SSC-H /SSC-A to capture single cells, and CTV positive 
corresponding to the second division peak and exclude 
feeder cells. Cells were sorted on a FACS AriaII (BD) at 
20 PSI through a 100-µm nozzle with yield, purity, and 
phase mask of 32, 16, and 0 respectively, in PCR tubes 
containing lysis buffer (0.2% Triton (Sigma Aldrich), 0.4 
U/µ L RNaseOUT (Thermo Fisher Scientific), 400n M RT 
primers (Sigma Aldrich)), and scRNA-seq primers. The 
fluorescent intensities for CFSE, CTY, and CTFR were 
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recorded for each cell to further reconstruct relationships 
between the cells using our clustering algorithm.

Cousin cell identification
Clustering was performed using the R mclust package 
[30] (version 5.4.10-https:// gitbio. ens- lyon. fr/ LBMC/ 
sbdm/ sister- cells  commit 76615c6e). This clustering 
script finds the genealogical relationships between cells 
in two steps. First, cousin cells are grouped together by 
their fluorescent barcode, determined by the CFSE and 
CTY fluorescent intensity values. Thus, if two, three, or 
four cells have the same CFSE and CTY intensities levels, 
they will be considered as cousins. In a second step, we 
select the groups for which the 4 cousin cells were sorted 
in the plate; then, the program identifies the two pairs of 
sisters within the 4 cousins. To do this, the median CTFR 
intensity is calculated; then, the two cells that have inten-
sity values higher than the median are matched, and the 
other two that have lower intensity values are matched 
together. Finally, when sorting, we used an index sorting 
option, which allows us to know in which well of the plate 
each cell was sorted. With this position information, our 
analysis program returns the position of the retained 
cells, i.e., the cells belonging to the cousin groups for 
which the 4 cells were successfully isolated in the lysis 
plate.

scRT‑qPCR data generation
scRT‑qPCR one step
Lysed cells were heated at 65 ◦ C during 3 min for hybridi-
zation with RT primer and immediately transferred into 
ice. Seven microliters  of RT-PCR mix (Superscript III 
RT/Platinum Taq 0.1 µL (Invitrogen), reverse and for-
ward primers and spikes at 1.33 µM final concentration 
and homemade 2X reaction Mix (120 mM Tris SO4 pH = 
9, 2.4 mM MGSO4, 36 mM  (NH4)2SO4, 0.4 mM dNTP)) 
was added to each well before launching of reverse tran-
scription and PCR run on thermocycler (program : 50 ◦ C 
15 min–95 ◦ C 2 min–20 cycles 95 ◦ C 15 s/60 ◦ C 4 min–
hold 4 ◦C). Three microliters of exonuclease mix (exonu-
clease I 1.6 U/mL (NEB), exonuclease buffer 1X (NEB), 
nuclease-free water (Thermo Fisher Scientific)) was 
added, and samples were incubated for a digestion run on 
thermocycler (program : 37  ◦ C 30 min–80  ◦ C 10 min). 
Pre-amplified samples were diluted five times in TE low 
EDTA (10 mM Tris, 0.1mM EDTA, pH = 8) and kept at − 
20 ◦ C for one night before qPCR.

qPCR with Fluidigm Biomark technology
3.15 µL of pre-amplified samples were distributed into a 
96-well plate, and 3.85 µL of qPCR mix (Sso EvaGreen 

Supermix with Low ROX (Bio-Rad)+ 20X DNA bind-
ing dye sample loading reagent) was added to each well. 
Simultaneously, a 96-well plate with primer mix (forward 
and reverse primers and spike at 2 µM final concentra-
tion, 2X Assay Loading Reagent, TE low EDTA) was pre-
pared. The microfluidigm chip was primed with injection 
oil using the IFC Controller HX (Fluidigm). Five micro-
liters of primers and 5 µL of samples were loaded in the 
dedicated wells of the chip. Air bubbles were removed 
with a needle. Samples and primers were mixed in the 
IFC Controller HX (Fluidigm) with the loading program. 
The chip was then transferred in the Biomark HD system 
(Fluidigm) for qPCR with “HE 96x96 PCR+Melt v2.pcl” 
thermal cycling protocol with auto exposure.

Quality control and normalization
Ct values obtained from the Biomark HD System (Flui-
digm) were exported as excel files and quality control 
was manually done. For each gene, “failed” quality 
control readings identified by the Fluidigm software 
were removed. Four negative controls (mix of water 
and lysis buffer) were used to detect unwanted ampli-
fication, and the associated genes were also removed. 
Finally, two externally added controls (spike 1 and spike 
4, Fluidigm) were used to control amplification con-
sistency. Filtered data frame was then imported into R 
(version 4.2.0) for normalization to remove amplifica-
tion bias (https:// gitbio. ens- lyon. fr/ LBMC/ sbdm/ sis-
ter- cells  commit 45a65972). For each cell, expression 
values were calculated by subtracting the gene Ct value 
from the geometric mean of Ct values from spike 1 and 
spike 4 of the corresponding well. Then, an arbitrary 
differential cycle threshold value of − 22 for null signal 
(corresponding to a Ct value of 30) was assigned for all 
genes with a Ct value less than − 22.

scRNA‑seq data generation
scRNA‑seq library preparation
Subsequently to sister cell or cousin cell isolation, we per-
formed single-cell RNA sequencing (scRNA-seq) using a 
modified version of the Mars-seq protocol [31] published 
in [23]. This specific protocol of scRNA-seq allowed us to 
know in advance which cell barcode would be carried by 
each cell and thus preserving the genealogy information 
of the cells. Briefly, reverse transcription (RT) was per-
formed so every mRNA of the cells were tagged with a 
combination of unique cell barcode and an 8-bp random 
UMI (unique molecular identifier) sequence for further 
demultiplexing. After barcoding, all mRNA were pooled, 
and second DNA strand was synthetized. Amplification 
was done overnight using in vitro transcription (IVT) to 
obtain a more linear amplification. A second barcode was 

https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
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added by RT to identify plates. Libraries were amplified 
by PCR, and Illumina primers were added.

Sequencing
Libraries were sequenced on a Next500 sequencer (Illu-
mina) with a custom paired-end protocol (130 pb on 
read1 and 20 pb on read2) and a depth of 200,000 raw 
reads per cell.

Data preprocessing
Fastq files were pre-processed through a bio-informatics 
pipeline developed in our team on the Nextflow platform 
[32], available in  https:// gitbio. ens- lyon. fr/ LBMC/ sbdm/ 
mars_ seq and published in [23]. Briefly, the first step 
removed Illumina adaptors. The second step de-multi-
plexed the sequences according to their plate barcodes. 
Then, all sequences containing at least 4T following the 
cell barcode sequence and UMI sequence were kept. 
Using UMItools whitelist, the cell barcodes and UMI 
sequences were extracted from the reads. The cDNA 
sequences were then mapped on the reference transcrip-
tome (Gallus GallusGRCG6A.95 from Ensembl), and 
UMIs were counted. Finally, a count matrix was gener-
ated for each plate.

Quality control and data filtering
All analysis were carried out using the R software (ver-
sion 4.1.2 [33]) and are available on the following git 
repository https:// gitbio. ens- lyon. fr/ LBMC/ sbdm/ sister- 
cells. For the sister cell dataset, cells were filtered based 
on several criteria: reads number, genes number, counts 
number, and ERCC (External RNA Controls Consor-
tium) content. For each criteria, the cut off values were 
determined based on SCONE [34] pipeline and were cal-
culated as follows:

Mean(parameter) − 3*sd(parameter)
We then removed orphan cells, meaning cells which 

sister was not present in the dataset. After filtering, we 
kept 60 undifferentiated cells (30 couples) and 64 differ-
entiating cells (32 couples). For the cousin cell dataset, we 
performed the same filtering strategy and kept only cell 
groups which contained the 4 cousin cells. After filtering, 
we kept 32 undifferentiated cells (8 groups of cousins) 
and 20 differentiating cells (5 groups of cousins).

Based on [35] work, we applied a stringent filter on 
gene expression level. Genes were kept in the dataset if 
there were expressed on average across all the cells. For 
instance, in a dataset containing 100 cells, the filter-
ing threshold would be of 100 UMIs for the gene to be 
kept. After applying this filter, we kept 1177 and 983 
genes for the sister cell dataset and the cousin cell dataset 
respectively.

Normalization
Filtered matrix were normalized using SCTransform 
from Seurat package (version 1.6 [36]-https:// gitbio. 
ens- lyon. fr/ LBMC/ sbdm/ sister- cells  commit 945aaca7 
and 94f13467) and were corrected for batch effect, day 
of isolation effect, medium effect, and sequencing depth 
effect. Both datasets (sister cells and cousin cells) were 
processed independently.

Bioinformatics analysis on R
All analysis were carried out using the R software [33] 
(version 4.1.2 for T2EC and version 4.2.0 for CD34+). 
Plots were performed ggplot2 package (version 3.3.6).

Dimensional reduction
Uniform Manifold Approximation and Projection 
(UMAP) dimension reduction and visualization were 
performed using UMAP package (version 0.2.8.0 [37]). 
Principal component analysis (PCA) was done using R 
prcomp function with default parameters.

Distance computation
Distances were computed on normalized matrix between 
all cells using the dist function from R software. Dis-
tances between sister cells were extracted and compared 
to the same number of randomly chosen distances of 
non-related cells. One thousand subsamplings were per-
formed this way (https:// gitbio. ens- lyon. fr/ LBMC/ sbdm/ 
sister- cells commit 8417545d and 45a65972).

Statistical tests
Mean comparisons were performed using Student t-test 
or Wilcoxon test when Student t-test was not applicable. 
It was decided after testing the normal distribution of the 
variables using a Shapiro-Wilk test.

Linear model with random variable and mixed effects model
Linear model with random variable and mixed effects 
model analysis were performed using lme4 R package 
(version 1.1-29-https:// gitbio. ens- lyon. fr/ LBMC/ sbdm/ 
sister- cells  commit c24fa472). The models were defined 
as followed:

Mixed effect model definition:

Linear model with random variable definition :

where Y is the mean expression of each gene, p1 is the 
fixed effect, and p2 is the random effect. Here, p1 corre-
sponds to the biological condition and can take two val-
ues (undifferentiated and differentiating), and p2 is the 

Y = p1+ p2+ e

Y = p2+ e

https://gitbio.ens-lyon.fr/LBMC/sbdm/mars_seq
https://gitbio.ens-lyon.fr/LBMC/sbdm/mars_seq
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells
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sorority effect. Two sister cells have the same discrete 
value. And e is the error of the model. Null models are 
the above model but without the random effect, e.g., the 
sorority effect. Genes were selected based on a significant 
adjusted Benjamini-Hochberg (BH) p-value after per-
forming a likelihood ratio test between the model and the 
null model.

Results
Cellular models of differentiation
To consolidate our results, we used two different cell dif-
ferentiation models.

As a first model, we used primary human cord blood 
derived CD34+ cells. These cells are believed to be a 
mixture of so-called multipotent progenitors and stem 
cells that retains the capacity to differentiate into vari-
ous cell types. Under ex vivo conditions, the CD34+ cells, 
unless stimulated, are stopped in the cell cycle and sur-
vive only a few days. When stimulated with a mixture of 
cytokines, they re-enter the cell cycle and will differenti-
ate into two different committed progenitors [15]. Briefly, 
by 24 h after stimulation, a burst in transcription pro-
duces a mixed transcription profile called “multilineage 
primed” state [11], and by the end of the first cell cycle 
(between 40 and 60 h), cells with two different transcrip-
tion profiles emerge in the population [15, 38]. However, 
this first fate decision is a highly dynamic and fluctuat-
ing process which is more complex than a simple binary 
switch between 2 options [15]. In the present work, we 
investigated by scRT-qPCR the transcriptional profile of 
couples of CD34+ sister cells derived from the first cell 
division after the cytokines stimulation.

As a second model, we used chicken primary eryth-
rocytic progenitors called T2EC [28]. Contrary to the 
human cord blood CD34+ cells, these cells can be main-
tained in a self-renewing state in vitro under appropriate 
culture conditions [29]. They can be induced to differ-
entiate at will into mature erythrocytes by a change of 
medium [29]. The T2EC cells undergo a simple “switch”: 
they leave the self-renewing phase and enter a differenti-
ation trajectory without bifurcation toward different end 
point phenotypes. This model allows a direct comparison 
of related cells in two different states: self-renewing and 
during differentiation. Furthermore, a previous study on 
this model had highlighted a critical point of cell com-
mitment, 24 h post-differentiation induction character-
ized by the rise in gene expression variability, measured 
with entropy [14]. Thus, we focused on the first steps 
of T2EC differentiation and generated two independ-
ent datasets, the first one to investigate the transcrip-
tional profile of couples of generation 1 sister cells in 
both cellular states and the second to investigate families 

of generation 2 sister and cousin cells in both state by a 
scRNA-seq approach.

Cell isolation
Isolation of first generation cells
We achieved the technical challenge to isolate related 
cells following their first and second division (generation 
1 sister cells and generation 2 sisters and cousin cells). 
We first developed two different methods to recover gen-
eration 1 sister cells, depending upon the cellular model 
at hand: a manual one and a cytometry-based method. 
Those original strategies are presented below and in 
Fig. 2. The technical details are explained in the “Meth-
ods” section.

Human CD34+ cells were grown during 24 h in a 
standard 96-well plate before being isolated into single 
cells, using a Smart Aliquotor device in which individual 
cells still share the same medium. Isolated mother cells 
were then cultured for 24 to 48 h in the device to allow 
one cell division. The wells were regularly inspected to 
detect this first division. Then, the resulting sister cells 
were isolated manually under a microscope using a pres-
sure controlled microcapillary and recovered in lysis 
buffer for further processing. The cells transcriptomes 
were analyzed by single-cell quantitative RT-PCR using 
the Fluidigm system as described in [15].

Manual hand-picking was not applicable to our other 
cell model, T2EC, since these cells tend to stick to each 
other even long after the mitosis is over. We thus decided 
to isolate T2EC sister cells using FACS to favor a fast 
isolation. T2EC mother cells were isolated after CFSE 
staining using CellenOne®low-pressure cell sorter and 
plated in a 384-well plate. Cell doublets, resulting from 
the first division, were identified using an inverted micro-
scope. The two cells were then isolated using a FACS 
Aria cytometer and recovered directly in tubes contain-
ing lysis buffer and scRNA-seq primers, for which the cell 
barcodes sequences were known in advance. scRNA-seq 
libraries were then constructed as previously described 
in [23] and sequenced.

Successfully recovering the two sister cells using 
FACS is per se a remarkable achievement, as this 
method usually requires hundreds of cells to start 
with, whereas the initial population here consisted 
of two cells. To achieve this, we first used the CFSE 
fluorescence intensity to ensure that the objects iso-
lated were indeed cells (Additional file  1: Fig. S1A–B 
for self-renewing medium and C–D for differentiating 
medium). CFSE stably binds to the amine groups pre-
sent in cytoplasmic proteins, conferring stable fluores-
cence intensity to the cell. As total protein content is 
supposed to be relatively equally distributed between 
sister cells during cell division, so is the fluorescence 
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intensity [39, 40]. We used this specification to vali-
date that the two cells isolated were actually sister cells. 
We evaluated the CFSE intensity correlation between 
pairs of sister cells and compared it to intensity cor-
relation values of randomly paired cells from the same 
dataset (Additional file 1: Fig. S1E–F for self-renewing 
cells and G–H for differentiating cells). Outstandingly, 
CFSE correlation values between self-renewing sister 
cells and differentiating sister cells were extremely high 
(0.91 and 0.95 Additional file 1: Fig. S1E and G, respec-
tively), whereas for randomly paired cells, CFSE corre-
lation values dropped between − 0.07 for self-renewing 
cells and 0.18 for differentiating cells (Additional file 1: 
Fig. S1F and H, respectively) indicating no correlation. 
Those results validated that our general strategy did 
allow to retrieve accurately generation 1 sister cells. 
The same procedure was applied to generation 1 T2EC 
mother cells in proliferating phase and in differentia-
tion by sorting the mother cells either in self-renewing 
medium or in differentiation-promoting medium.

We further analyzed the T2EC scRNA-seq data qual-
ity and reproducibility by characterizing the observed 
biological process applying two dimensional reduc-
tion methods, UMAP and PCA (see the “Methods” sec-
tion). As expected, the cells separated based on their 
differentiation state (Additional file  1: Fig. S2A and B, 
respectively). This observation was validated by a dif-
ferential expression analysis between the two groups 
(self-renewing and differentiating cells-Additional file  1: 
Fig. S2C). Genes involved in early erythrocyte matura-
tion and inhibition of differentiation such as ID2 known 
to be an erythropoiesis inhibitor in mice [41] and FTH1 
and TMSB4X known to be expressed in human eryth-
roid progenitors [42] were upregulated in self-renewing 
cells, while HBBA, HBAD, and  HBA1  genes involved in 
hemoglobin complex and TAL1, erythroid differentiation 
factor, were upregulated in differentiating cells, as previ-
ously described [23].

Fig. 2 General workflows developed to generate, follow and separate generation 1 sister‑cells from CD34+ (A ‑ manual strategy) or T2EC (B 
‑ cytometry‑based strategy) mother cells. See text and Methods for details
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Isolation of second generation cells
Using the T2EC model, we then developed another FACS 
sorting methodology to generate a second dataset con-
sisting of generation 2 sister and cousin cells, that is to 
say the 4 cells resulting from two divisions, both in self-
renewing state or in differentiation state. To record cells 
genealogies, we used different cell tracers to achieve flu-
orescent barcoding of cells families, and we stained the 

cells sequentially to retrieve both cousin relationships 
and sister relationships within different families (Fig. 3). 
Briefly, a small number of mother cells was stained such 
as every mother cell carried a unique fluorescent bar-
code. Each fluorescent barcode consist in a combina-
tion of CTY and CFSE at different intensities, leading to 
6 different barcodes. This barcode is passed along to the 
mother cell progeny over two cell generations to allow 

Fig. 3 General labelling strategy for generation 2 T2EC cells identification. On day 1, a population of mother‑cells was stained using CTV. The 
CTV positive population was divided into six subgroups, and each subgroup was uniquely barcoded using a combination of CFSE and CTY 
concentrations, resulting in six distinct fluorescent barcodes. One mother‑cell from each subgroup was then retrieved and combined in a well 
for approximately 24 hours of culture (resulting in a total of six mother cells, each with a unique fluorescent barcode). On day 2, following the first 
division, a fourth dye, CTFR, was introduced to label sister‑cells with a different intensity in order to be able to discriminate the cells relationship 
after the subsequent division. On day 3, cells which underwent 2 divisions, determined by the intensity of CTV, were sorted into single‑cells, 
and their fluorescent intensities for CTY, CFSE and CTFR signals were recorded. Finally, a dedicated script was used to infer the relationships of cells 
based on the fluorescent intensities (see "Methods" section)
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a good discrimination of cells families. One mother cell 
from each barcode was isolated by FACS in a single well 
of a culture plate. After the first cell division, another 
cell tracer was added to discriminate sister cells within 
the cousin groups. After the second cell division, the 
cells (generation 2) were sorted in lysis buffer containing 
scRNA-seq primers of known sequence, and the relation-
ships between the cells were recovered using a clustering 
script developed in our team. Details of the methodol-
ogy are presented in Fig. 3 and in the “Methods” section. 
Further viability analysis was performed and showed that 
the staining strategy did not compromise cells physiology 
(Additional file 1: Fig. S3).

Using first generation methodologies, we successfully 
collected 86 CD34+ cells, 60 self-renewing T2EC cells, 
and 64 differentiating T2EC cells encompassing respec-
tively 43, 30, and 32 couples of generation 1 sister cells. 
With the second generation original fluorescent barcod-
ing approach, we collected 8 families of generation 2 
self-renewing T2EC cells (32 cells) and 5 families of gen-
eration 2 differentiating T2EC cells (20 cells).

Strategy to evaluate transcriptomic similarities 
between related cells
We used the Manhattan distance as the principal metric 
to assess global transcriptomic similarities between cells. 
Manhattan distance is a robust geometric distance that 
exhibits low sensitivity to data sparsity, which is inher-
ent to single-cell transcriptomics data [43]. Euclidean 
distance was also used to confirm the reliability of the 
results.

In the case of hypothesis 1, which concerns memory 
maintenance, there would be no significant transcrip-
tional differences between self-renewing sister cells com-
pared to differentiating sister cells. This hypothesis would 
imply that at the first cell generation, differentiating sis-
ter cells would exhibit a similar distance from each other 
compared to self-renewing sister cells. And at the second 
generation, there would be no difference either between 
differentiating sister cells compared to self-renewing 
sister cells nor between differentiating cousin cells com-
pared to self-renewing cousin cells.

In the case of hypothesis 2, which pertains to the grad-
ual erasure of memory, there would be a gradual increase 
in the sister-to-sister differences as differentiation pro-
ceeds. Meaning, at the first generation, differentiating 
sister cells would present a greater distance compared 
to self-renewing sister cells. As the second generation is 
reached, this distance would increase and would be sup-
ported by (1) second generation differentiating sister cells 
presenting a greater distance compared to second gener-
ation self-renewing sister cells and (2) second generation 

differentiating cousin cells presenting a greater distance 
compared to self-renewing cousin cells.

In the case of hypothesis 3, which suggests an instan-
taneous erasure of memory, there would be very strong 
transcriptional differences between self-renewing and 
differentiating sister cells at the beginning of the differ-
entiation process, with no evolution of those differences 
thereafter, that is, at the first generation, differentiating 
sister cells would present a substantial greater distance 
between them compared to self-renewing sister cells. 
Upon reaching the second generation, differentiating 
sister cells would display a similar or smaller distance 
compared to self-renewing sister cells, and differentiat-
ing cousin cells would present a similar or slightly greater 
distance compared to self-renewing cousin cells.

Transcriptomic similarities between generation 1 sister 
cells after one division
We started by assessing whether or not generation 1 
sister cells displayed more similar global gene expres-
sion levels compared to non-related cells. Here, non-
related cells correspond to cells which do not originate 
from a common mother cell. The Manhattan distances 
were computed between the gene expression vectors 
of each cell. Gene expression vectors for the 43 couples 
of CD34+ sister cells were composed of 83 genes after 
quality control and data filtering (see the “Methods” sec-
tion). Those genes were either selected for their known 
function in the early differentiation of hematopoietic 
cells (64% of them) or randomly chosen (36%) to pro-
vide an assessment of the overall transcriptional state of 
the genome [15]. For the 62 couples of T2EC sister cell 
gene expression vectors, we retained 1177 genes after 
data filtering and normalization of scRNA-seq data (see 
the “Methods” section). Feature selection was performed 
based upon the Breda et  al. work [35], showing that in 
scRNA-seq dataset, genes with too low counts could not 
be analyzed due to poor variance estimation. We there-
fore kept genes if the ratio of the number of UMIs for 
this gene to the total number of cells is at least 1, which 
means that this gene may not be expressed in some cells 
and may be more highly expressed in others. The result-
ing 1177 genes represent 10% of the genes in our dataset.

We performed the analysis by computing the Manhat-
tan distances between generation 1 sisters and randomly 
selected non-related cell pairs from the same pool of 
cells (Fig.  4A, B). Mean distances were then compared 
between the two groups (generation 1 sisters and non-
related cells) for both CD34+ and T2EC cells. For the 
latter, both self-renewing and differentiating cells were 
analyzed separately. For both models and in both biologi-
cal conditions, mean Manhattan distances between gen-
eration 1 sister cells were always significantly smaller than 
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the mean distances between non-related cells (Fig.  4A, 
B-Wilcoxon test for CD34+ cells p-value = 6.5e−05, Stu-
dent t-test for self-renewing T2EC cells p-value = 7e−07 
and for differentiating T2EC cells p-value = 1.4e−04). 
Similar results were obtained using Euclidean distances 
(Additional file 1: Fig. S4A and B).

To ensure that the difference in mean distance 
observed between generation 1 sisters and non-related 
cells was not an artifact due to difference in sample size, 
we performed a randomization experiment with mul-
tiple subsamplings. Briefly, 43 non-related CD34+ cell 
pairs, 30 non-related self-renewing T2EC cell pairs, and 

32 non-related differentiating T2EC cell pairs were ran-
domly drawn from the corresponding groups 1000 times. 
The mean distance was calculated for each pair and plot-
ted on the histograms shown on Fig. 4C, D, E. For both 
models, and for T2EC in both biological conditions, 
the mean distance between generation 1 sister cells was 
never part of the non-related cells mean distances distri-
bution. Similar results were obtained using Euclidean dis-
tances (Additional file 1: Fig. S4C, D and E). Those results 
strongly suggest that the observed difference was genuine 
and not due to sampling bias.

Fig. 4 Manhattan distances comparison between generation 1 sister‑cells and non related cells. (A) Boxplots of Manhattan distances 
between the generation 1 CD34+ sister and non related cells. CD34+ sister‑cells (43 couples) are in orange and CD34+ non related cells (3612 
couples) in green. Manhattan distances were computed using all the 83 selected genes. Statistical comparison was performed using Wilcoxon test. 
(B) Boxplots of Manhattan distances between generation 1 T2EC sister and non related cells. Manhattan distances were computed between all cells 
from the same biological conditions using all the 1177 selected genes. Self‑renewing sister‑cells (30 couples) are in light orange and self‑renewing 
non related cells (1740 couples) in light green, differentiating sister‑cells (32 couples) are in orange and differentiating non related cells (1984 
couples) in green. Statistical comparison was performed using Student t‑test. (C) Histograms of mean Manhattan distances of 1000 random 
subsampling of distances between 43 CD34+ non related cell pairs (green), compared to the mean distance between the 43 CD34+ generation 
1 sister‑cells pairs (orange line). (D) Histograms of mean Manhattan distances of 1000 random subsampling of distances between 30 T2EC 
self‑renewing non related cell pairs (light green histogram), compare to the mean distance between the 30 T2EC self‑renewing generation 1 
sister‑cells pairs (light orange line). (E) Histograms of mean Manhattan distances of 1000 random subsampling of distances between 32 T2EC 
differentiating non related cell pairs (Green histogram), compare to the mean distance between the 32 T2EC differentiating generation 1 sister‑cells 
pairs (orange line)
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This is a clear indication that the gene transcription 
profiles of generation 1 sister cells in both experimental 
models are more similar to each other than to those of 
non-related cells of the same type sharing the same envi-
ronment and undergoing similar biological processes. 
Those results also highlight that differentiating sister cells 
from generation 1 display a form of transcriptional mem-
ory, which complements previous studies demonstrating 
a transcriptional memory in self-renewing sister cells.

Focusing on the T2EC model, for which we compared 
related cells in two cellular states (self-renewing and dif-
ferentiating), although the difference was borderline non 
statistically significant (p-value = 6e−02), our results 
point toward a decrease in transcriptome similarity dur-
ing differentiation as shown by a higher mean distance 
value for generation 1 differentiating T2EC sister cells 
compared to self-renewing T2EC sister cells.

We wondered whether or not the sister-to-sister cell 
distance will continue to increase as the differentiation 
proceeds in the T2EC cells, one generation later.

Generation 2 cells transcriptomes continue to diverge 
during differentiation
We generated a second dataset consisting of generation 
2 T2EC sister and cousin cells (after two cell divisions) 
using the methodology described above. As scRNA-seq 
requires the lysis of the cell under investigation, genera-
tion 1 data and generation 2 data consist of different cell 
families and thus cannot be compared to each other so 

both dataset were treated and analyzed separately (see 
the “Methods” section).

The second generation dataset was composed of 4 
cousin cells per family (8 families of cells in self-renew-
ing and 5 families of cells in differentiation condition), 
and within the 4 cousins, they consisted of two couples 
of sister cells. After data filtering and normalization, 
we retained 983 genes for subsequent analysis. As a 
reminder, Manhattan distance is an additive formula; the 
absolute distance value is thus directly dependant of the 
number of genes used in its calculation. It is therefore not 
surprising that the Manhattan distance values are differ-
ent from generation 1 dataset and generation 2 dataset.

The analysis of mean Manhattan distances from gen-
eration 2 dataset showed that, when comparing condi-
tions, in line with previous results described after one 
cell generation in Fig. 4, generation 2 differentiating sis-
ter cells were less close to each other than generation 2 
self-renewing sister cells, although not significantly so 
(Fig. 5).

Although the differentiating generation 2 sister and 
cousin cells have a similar average Manhattan distance, 
this is not inconsistent with our hypothesis because all 
these cells were induced to differentiate for 48 h. They 
represent the same generation and not a complete family 
tree. Indeed, the generation 2 sister cells cannot be used 
as a proxy of generation 1 sister cells (since they have 
been differentiating for 48h, and not 24h as the kinetic 
should be), and thus, however tempting, comparing 
generation 2 sister cells to generation 2 cousin cells will 

Fig. 5 Manhattan distances comparison between generation 2 sisters, cousins and non related T2EC cells. Boxplots of Manhattan distances 
between generation 2 sisters, cousins and non related T2EC cells. Manhattan distances were computed between all cells (32 self‑renewing 
and 20 differentiating cells) from the same biological condition using the 983 selected genes. Self‑renewing generation 2 sister‑cells (16 pairs) 
are presented in light blue, self‑renewing generation 2 cousin‑cells (32 pairs) are in medium blue and self‑renewing non related cells (448 pairs) 
are in dark blue. Differentiating generation 2 sister‑cells (10 pairs) are in yellow, differentiating generation 2 cousin‑cells (20 pairs) are in orange 
and differentiating non related cells (160 pairs) are in brown. Statistical comparisons were performed using Student t‑test
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not give a temporal information as one might intuitively 
think. For this reason, we did not compare generation 2 
sister cells to generation 2 cousin cells as this comparison 
do not reveal temporal information of the global process 
(division and differentiation).

Interestingly, generation 2 differentiating cousin 
cells were statistically further apart from the genera-
tion 2 self-renewing cousin cells. Indeed, the average 
Manhattan distance between generation 2 differenti-
ating cousin cells was statistically greater than that of 
generation 2 self-renewing cousin cells further con-
firming a decrease in transcriptome similarity during 
the differentiation process (Student t-test p-value = 
2.2e−03).

Finally, generation 2 sister cells, regardless of their 
biological condition (self-renewing or differentiating 
for 48 h), were always closer to each other than ran-
domly paired cells (Fig. 5-Student t-test for self-renew-
ing T2EC cells p-value = 1.4e−02 and for differentiating 
T2EC cells p-value = 3.5e−03). Furthermore, the mean 
Manhattan distances of the generation 2 cousin cells 
were also statistically smaller than those of non-related 
cells for both biological conditions, indicating a prox-
imity of transcriptomes which persisted after one more 
cell generation in both conditions, observed separately 
(Student t-test for self-renewing T2EC cells p-value = 
2.3e−05 and for differentiating T2EC cells p-value = 
3.9e−03.

The same analysis using mean Euclidean distances gave 
very similar results (Additional file 1: Fig. S5).

Identification of genes subjected to transcriptional 
memory
We expected that the transcriptomic similarities 
observed may concern a subset of genes, the “memory 
genes,” the expression of which would be variable across 
couples of cells but correlated within couples of sister 
cells (Fig. 1D). Thus, we applied a “gene-wise” approach 
to identify genes subjected to transcriptional memory 
using a linear model with random effect and a mixed 
effects model. For CD34+ cells, memory genes were 
identified including a sisterhood random effect to capture 
between-sisters correlation. For T2EC cells, the expres-
sion of each gene was modeled by an additive model 
combining a fixed condition effect (differentiating or not) 
to account for difference in expression levels and a sis-
terhood random effect capturing sister cells correlation. 
Memory genes were selected by testing for the random 
effect with a likelihood ratio test comparing the model 
with and without the sisterhood effect. The test was per-
formed on each gene followed by a Benjamini-Hochberg 
p-value adjustment for multiple testing [44]. As a nega-
tive control, we performed the same test on randomly 
paired cells, and detected no memory gene (Fig. 6).

We detected 10 genes with significant correlation 
between-sisters in CD34+ cells and 55 genes in T2EC 
cells (cf. Additional file  1: Table  S7). In CD34+ cells, 
memory genes were involved in diverse functions, 
including stemness (GATA1,  CD38, CD133), differen-
tiation and proliferation (CD74, ERG, KIT), metabolism 
(BCAT1, HK1), cytoskeleton (ACTB), and tRNA splicing 

Fig. 6 Density plot of genes intra‑class correlation in generation 1 sister‑cells and randomly paired CD34+ cells (A) and T2EC cells (B). Identification 
of memory genes using a linear model with random effect (CD34+) and mixed effect model (T2EC). Memory genes are in dark green (11 genes 
for the 86 CD34+ cells, 55 genes for the 104 T2EC cells), and non significant genes are in light green (72 for CD34+ cells, 1022 for T2EC cells); 
no memory genes were identified when cells were randomly paired (orange curve)
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(C22orf28). In T2EC, memory genes were involved in 
erythropoietic differentiation (HBBA, HBA1, HBAD, 
which are hemoglobin subunits, or RHAG membrane 
channel component involved in carbon dioxide trans-
port), chromosome structure (SMC2, H2AFZ), ribo-
somes and translation (RPS13, RPL22L1, UBA52, 
EEF1A1), and metabolism (GAPDH, LDHA). One should 
note that LDHA, key actors of the glycolytic metabolism, 
was previously found to also be involved in the erythroid 
differentiation process [45].

It is quite remarkable that, although many transcription 
factors were present in the initial list of genes, we found 

either no (T2EC) or only one (CD34+) transcription fac-
tor among memory genes.

We assessed the sensitivity of the Manhattan distance 
to the gene set size (Additional file 1: Fig. S6). We com-
puted the mean Manhattan distances using random 
gene subsampling from both datasets (scRT-qPCR and 
scRNA-seq) and compared the distances between sister 
and non-related cells. The subsamples are random draws 
of a percentage of genes from the initial dataset, rang-
ing from 10 to 90%. For each percentage, we performed 
1000 random draws of genes and calculated the average 
Manhattan distance between sisters and non-related cells 

Fig. 7 Manhattan distances comparison between generation 1 sisters and non related T2EC cells using subsets of genes. (A) Boxplots 
of the Manhattan distances computed between all cells from the same biological conditions using all the 55 memory genes. (B) Boxplots 
of the Manhattan distances computed between all cells from the same biological conditions using the 55 most variable genes. (C) Venn diagram 
of the 55 memory genes and the 55 most variable genes, 16 genes are common between both categories. (D) Boxplots of the Manhattan distances 
computed between all cells from the same biological conditions using the most variable genes, excluding the memory genes. (E) Density plot 
of the distribution of adjusted p‑values from Wilcoxon test for mean Manhattan distance comparisons between conditions using 55 randomly draw 
genes, 1000 times. Blue curve is the p‑values distribution of mean distance comparison between self‑renewing sister‑cells vs self‑renewing non 
related cells. Yellow curve is the p‑values distribution of mean distance comparison between differentiating sister‑cells vs differentiating non related 
cells. P‑value at 5% is presented as dotted grey vertical line
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based on those restricted lists of genes. Subsequently, a 
Wilcoxon statistical test was carried out. For each per-
centage, a distribution of the 1000 adjusted p-values was 
plotted (Additional file 1: Fig. S6). The results of the com-
parisons obtained showed that there is an effect of the 
sample size: the larger the sample size, the more obvious 
the sister cells similarity (i.e., the more robust this simi-
larity is to subsampling).

We then computed again and compared the Manhat-
tan distances for the T2EC cells between sisters and non-
related cells using as a vector only the 55 memory genes 
(Fig.  7A). As a result, the difference in within-distance 
between sister cells and non-related cells, in both bio-
logical conditions (self-renewing and differentiating), was 
even more pronounced than when computing the Man-
hattan distances using all 1177 genes of the scRNA-seq 
dataset (see Fig.  4B). We selected the 55 most variable 
genes from our dataset and compared the Manhattan dis-
tances of sister cells to non-related cells (Fig. 7B). Among 
the 55 most variable genes, 16 were also memory genes 

(Fig. 7C). We removed those 16 memory genes from the 
55 most variable genes and performed the distance com-
parison with the 39 most variable genes (Fig. 7D). In both 
comparisons, a significant difference in within-distance 
between sister cells and non-related cells in both biologi-
cal conditions was observed. Finally, we draw 1000 times 
55 random genes and compared the Manhattan distances 
of sister cells to non-related cells. We analyzed the distri-
bution of the corrected p-values obtained from the 1000 
tests (Fig.  7E). The results showed that there is a prob-
ability to observe no significant within-distance differ-
ence between sister cells and non-related cells depending 
on the gene set. This probability is even higher for dif-
ferentiating cells. But overall, the most significant differ-
ence observed was obtained with the 55 memory genes 
(p-value = 2.2e−16), further confirming that the identi-
fied genes are the ones imprinted by the transcriptional 
memory.

The findings revealed that there is a likelihood of 
encountering no significant within-distance disparity 

Fig. 8 T2EC Memory genes characteristics. (A) mRNA half‑life of memory genes and other genes present in the scRNA‑seq dataset evaluated 
at 24hrs post differentiation induction [46] vs their Intra Class Correlation value extracted from the mixed effects model. (B) Cumulative empirical 
distribution graph of transcripts abundance of the 55 memory genes in the dataset compared to the total genes (1177) of scRNA‑seq data
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between sister cells and unrelated cells. This likelihood is 
further elevated for differentiating cells.

To validate our findings, we also checked if these 
memory genes were not only genes associated with high 
mRNA half-life. We crossed our gene list to a previously 
published dataset which evaluated half-life duration of 
genes during T2EC differentiation using scRT-qPCR 
[46]. We were able to compare the half-life duration of 6 
memory genes and found that 4 of them have a relatively 
long half-life but 2 of them have a quite short half-life 
(Fig. 8A). Furthermore, other genes with longer half-life 
were not identified by the model as memory genes. Thus, 
half-life duration could not be the only cause of memory.

We also questioned the relationship between the level 
of expression of a gene and its belonging to the memory 
genes class. One thousand subsample distribution analy-
sis of the abundance of the 55 memory genes compared 
to the abundance of 55 randomly drawn genes showed 
an enrichment for higher abundance of the 55 memory 
genes (Fig.  8B-Kolmogorov-Smirnov test p-value = 
1.6e−02). We therefore can not exclude that part of the 
memory is due to high level expression for at least some 
memory genes and could be related to synthesis and deg-
radation dynamics. However, this result was expected 
because to prevent false correlation that would be due 
to high numbers of zeros in expression value of lowly 
expressed genes between sister cells, we selected genes 
with mid to high-level of expression in our scRNA-seq 
data set (see the “Methods” section). Finally, we did not 
regress cell-cycle effects on our data, due to the fact that 
cell-cycle is not as well described in chicken cells as it is 
in mammalian cells and thus cannot exclude that the sis-
ter-to-sister resemblance may, in part, be a consequence 
of the sister cells being at similar state in the cell-cycle. 
However, while we found a GO term “cell-cycle” enrich-
ment in the 1177 selected genes, no cell-cycle related 
genes were identified as memory genes, leading us to 
believe that cell-cycle is not the main driver of this tran-
scriptional memory.

Discussion
In the present study, we questioned the interplay between 
the transcriptional memory and the gene expression vari-
ability which characterizes differentiation processes.

We developed two experimental frameworks to 
recover sister cells (generation 1) and one experimen-
tal framework to recover cousin cells (generation 2) 
transcriptomes while preserving the information about 
their lineage at the resolution of the cell division. We 
analyzed the transcriptomes of related cells from two 
different cell differentiation systems using two different 
single-cell transcriptomics technologies.

Comparison of global transcriptomic state, using 
Manhattan and Euclidean distances, showed that dif-
ferentiating generation 1 sister cells (both CD34+ cells 
and T2EC cells) transcriptomes are globally signifi-
cantly more similar between each other than between 
non-related cells.

In our controlled differentiation model (T2EC cells), we 
observed after one cell division (generation 1), a greater 
mean distance for differentiating sister cells compared 
to self-renewing sister cells. Moreover, the difference 
becomes significant after a second division (generation 
2), showed by differentiating cousin cells presenting a sig-
nificantly higher distance than self-renewing cousin cells. 
Those results showed that during cell differentiation, 
related cells deviate faster from each other than during 
self-renewing divisions.

Mixed models further highlighted that some genes have 
their expression statistically correlated between sister 
cells, while none were found between non-related cells. 
We termed those genes “memory genes” as our results 
suggest that their expression is more correlated in related 
cells thus driving the transcriptomic similarity observed 
between sisters and cousin cells. However, the mecha-
nisms leading to a more correlated expression between 
related cells for those genes remain to be investigated.

In the introduction, we formulated 3 hypothesis on the 
possible evolution of the transcriptional memory upon 
differentiation induction (Fig.  1B). Our results there-
fore support the second hypothesis: upon differentiation 
induction, transcriptional memory is gradually erased 
eventually reconstituting, at the clonal scale, the variabil-
ity observed in the initial population.

While our experimental methods allow to preserve 
genealogical cell information for two generations, eve-
rything happening later is presently out of reach. We 
therefore are currently developing a microfluidics-based 
approach, consisting in a microfluidics chip coupled to 
scRNA-seq, which could be used on non-adherent cells 
to investigate cellular memory for several (more than 2) 
generations [47]. Recently, a study based on a complex 
cell-tracking system combining time-lapse microscopy, 
antibody-based cell isolation, and scRNA-seq on robot-
ically-isolated cells has been used to address the ques-
tion of asymmetric division [26]. While the question is 
different from ours, the approach could be considered to 
investigate longer genealogies, but it would require com-
plex equipment and antibodies against chicken cells in 
order to track division.

In order to explain the existence of memory genes as 
we (this work) and others [5–8] have described, one need 
to assume that a significant fraction of those mechanisms 
must “survive” the mitosis, i.e., be transmitted through 
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the dramatic epigenomic and cellular rearrangements 
involved in the cell division process. If one assumes that 
the gene regulatory network (GRN) state is essentially 
characterized by protein quantities, then it is easy to see 
that it will be pass through, at least for the proteins with a 
sufficiently long half life [15]. Reestablishment of the epi-
genetic marks [48] and of genomic structure [49] after a 
division process has also been documented.

It has recently been described that the persistence of a 
low level of transcription throughout the mitosis might 
at least partly explain how transcriptional memory can 
be maintained. It would be interesting in that regard, to 
assess the overlap between our memory genes and these 
genes for which the mitotic transcription can be detected 
using UEseq in mitotic chromosomes [50].

Differentiating division is a specific challenge since 
at each division a subtle combination of changes and 
stability must be imposed. In this respect, one can see 
the bookmarking process [51] as a stabilizing process, 
whereas the increase in gene expression variability [11–
19] will affect the GRN state and therefore will tend to 
modify gene expression burst parameters. In fact, at the 
single-cell level, gene expression is in essence a proba-
bilistic process that is characterized by a given burst 
frequency and burst size [52]. The mechanisms regulat-
ing this bursting process are still a matter of debate [53, 
54], but are usually thought to involve (1) the state of 
the underlying GRN [55]; (2) the state of the chromatin, 
a.k.a. the epigenetic marks [7, 8]; and (3) the genomic 3D 
state [56]. Of course, none of these mechanisms operate 
in isolation, and more integrated mechanisms, like the 
metabolism, are also key players in the burst properties 
of transcription (see, e.g., [57]).

It is interesting to note that our two model systems do 
behave quite differently in regard to the division process. 
The initial stages of T2EC erythrocytic differentiation 
have been shown to result in an increase of the prolifera-
tion rate due to a shortening of the G1 period [28]. This 
is in sharp contrast with the observation that the CD34+ 
first division occurs after an unusually long cell cycle that 
lasts on average more than 55 h [15]. It could therefore 
be that the molecular mechanisms linking cell division 
and differentiation might be quite different in the two 
cell types, although the final result will be similar: cellular 
memory will show a high level of robustness in front of 
the cellular state change associated with the differentia-
tion process.

Finally, it is tempting to speculate that the observed 
burst in entropy at the beginning of the differentiation 
sequence is helping the differentiating cells to overcome a 
memory process that is meant to prevent changes in cel-
lular identity.

Conclusions
To quantitatively investigate the interplay between tran-
scriptional memory and gene expression variability 
during cell differentiation, we developed sophisticated 
experimental approaches to recover transcriptomes from 
related cells after one or two divisions while preserving 
lineage information at the single-cell level.

We found that the gene transcription profiles of sis-
ter cells exhibit more similarity to each other than to 
unrelated cells of the same type. More importantly, we 
observed greater disparities between differentiating sister 
cells compared to self-renewing sister cells. An increase 
in this divergence was evident from the first generation 
to the second generation when comparing differentiating 
cousin cells to self-renewing cousin cells.

These findings support the idea of a gradual eras-
ure of transcriptional memory during the differentia-
tion process. The initial increase in entropy observed in 
all systems examined to date during differentiation may 
facilitate cells in overcoming memory processes and 
allow the acquisition of a differentiated cell state.
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