
Kervin and Overduin ﻿BMC Biology           (2024) 22:46  
https://doi.org/10.1186/s12915-024-01849-6

OPINION

Membranes are functionalized 
by a proteolipid code
Troy A. Kervin1,2*    and Michael Overduin2*    

Abstract 

Membranes are protein and lipid structures that surround cells and other biological compartments. We present a con-
ceptual model wherein all membranes are organized into structural and functional zones. The assembly of zones such 
as receptor clusters, protein-coated pits, lamellipodia, cell junctions, and membrane fusion sites is explained to occur 
through a protein-lipid code. This challenges the theory that lipids sort proteins after forming stable membrane sub-
regions independently of proteins.
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Membrane zonation
Membranes are organized fluid structures that incor-
porate many different proteins and lipids. Their basic 
architecture consists of a lipid bilayer with embedded 
integral proteins and peripheral proteins that associ-
ate with a single leaflet. While more than 50 years have 
passed since this architecture was revealed [1], there is 
no consensus on how proteins and lipids interact to cre-
ate distinct functional regions within the same continu-
ous fluid. To resolve this quandary, it is useful to refer to 
any of the unique membrane regions with a single term 
so that explanations can be generalized, although “mem-
brane raft” refers only to regions enriched in sterols and 
sphingolipids [2], while “domain” ambiguates with pro-
tein domains. Here, we formulate an explicit framework 
for membrane structure centred around the concept of a 

“zone” [3–5], which we define as a region of membrane 
enclosing a contiguous group of particles capable of 
working together to perform a biological function.

In our endeavour to comprehensively describe mem-
brane structure, we explain what zones are and how they 
are created and regulated. Examples of zones include 
clathrin-coated pits, microvilli, lamellipodia, choles-
terol- and sphingolipid-enriched regions [2, 6], neuronal 
synaptic termini, cell junctions, membrane contact sites, 
tetraspanin-enriched “microdomains”, bacterial “micro-
domains” [7], receptor clusters, viral budding sites [8], 
and integral proteins stabilized by lipid “fingerprints” [9–
11]. These functional units are created by a protein-lipid 
language that harmonizes with the genetic code to direct 
the flow of information in cells; hence, we call our model 
the proteolipid code.

Hierarchy of zone attributes
We will first explain how zones can be conceptualized 
with analogy to the structure hierarchy that describes 
proteins (Fig. 1). A hierarchy for membrane structure has 
already been proposed [12, 13]; however, it is more con-
venient when defined in relation to zones. The primary 
structure of a zone is its lipid and protein composition, 
which can be determined with methods such as mass 
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spectrometry. Secondary structure is the spatial arrange-
ment of zone components, including bilayer asymmetry 
and non-random lateral distributions. This can be probed 
by extracting physiological membranes and visualiz-
ing them with a structural technique such as cryogenic 
election microscopy (Fig.  2a) [14]. Tertiary features are 
supramolecular properties such as curvature, thick-
ness, fluidity, density, electrostatic charge, and gradient 
or wave characteristics and can be observed in molecu-
lar simulations [12]. Finally, quaternary relationships 
are interactions between zones such as the exchange of 

molecules and the intake or loss of membrane sections. 
These can be seen with techniques such as single parti-
cle tracking or by imaging formations like budding vesi-
cles, elongating tubules, membrane contact sites between 
organelles, or hemi-fusion intermediates.

All four zone attribute ranks have functional signifi-
cance. For instance, secondary structure is vital for inte-
gral proteins such as receptors and ion channels, which 
require bound lipids for stability and sometimes regula-
tion [9, 21]. Furthermore, colocalized molecules belong-
ing to secondary structure can be coincidentally detected 

Fig. 1  Hierarchy of zone attributes. a Zone primary structures with proteins as pink shapes and lipids as circles with two tails or one tail attached 
to protein. b Secondary structures in either side or top views with proteins in pink and lipids as circles, ovals, or hexagons representing free, loosely 
bound, and strongly bound to protein, respectively. c Tertiary attributes illustrated on a bilayer with one leaflet coloured blue and the other green. d 
Quaternary attributes illustrated by merging and separating zones
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by proteins that are recruited from the cytosol [22, 23]. 
Tertiary features such as curvature create the morphol-
ogy of organelles and can be sensed by crescent-shaped 
BAR domains [24]. Stiffness is also an important tertiary 
characteristic that plays a role in vesicle genesis and viral 
fusion [25, 26]. Quaternary associations are the materi-
alization of direct communication between membra-
nous organelles, cells, and viruses. Secondary, tertiary, 
and quaternary attributes each originate from primary 
structure, which is organized by integral and peripheral 
proteins.

Zoning by integral proteins
We begin our discussion on zoning by summarizing the 
role of integral proteins, which account for about half the 
mass of physiological membranes [27, 28] and approxi-
mately 26% of the human proteome [29]. Integral pro-
teins possess unique lipid “fingerprints” by virtue of their 
preferential interactions [10]. They may also have strong 
close-range interactions with each other, directly or 
through their fingerprints [30], which can cause them to 
cluster into “islands” [21, 31, 32], particularly when lipids 
are scarce, when hydrophobic domains have matching 
lengths, or when there is mismatch between hydrophobic 
domains and lipid aliphatic chains [33]. When integral 
proteins cluster, they leave surplus lipids not occupying 
their remaining fingerprint sites to pool into adjacent 
“void” zones [4, 31]. Consequently, integral proteins form 
lipid fingerprints, islands, and lipid-only voids.

This theory of zoning, which also extends to mem-
brane-anchored peripheral proteins, explains observa-
tions that protein-independent lipid clustering does not. 
The proportion of Ras proteins found in cholesterol-rich 
zones is independent of protein expression level [34, 35], 
suggesting that proteins recruit lipids that then locally 

Fig. 2  Representations of the proteolipid code. a Structure of a zone 
resolved by cryogenic electron microscopy containing the Slo1 
channel α tetramer [14] (PDB ID: 8GHF, silver ribbons) and interacting 
β4 subunit [15] (PDB ID: 6V22, light green). The channel 
has fingerprints of cholesterol (green) and PC (blue) [14], recognizes 
PI(4,5)P2 via basic (orange and red) and aromatic (yellow) residues 
[16–18], and is regulated by Ca2+ (magenta spheres) and coordinates 
Mg2+ (aqua). Created with ICM-browser. For a model to be called 
a zone, it should contain a set of molecules capable of performing 
a biological function in a membrane. b The lipidome depicted 
with hexagons representing individual molecules with their standard 
IUPAC abbreviations and organized by their major but nonexclusive 
subcellular origin [19, 20]. PIP terminal phosphate numbers are 
displayed on red corners and arrows indicate enzymatic reactions 
that convert these lipids. c Eukaryotic organelles are depicted 
and coloured as in b. Lipid aliphatic chains have different lengths 
and degrees of unsaturation which vary by zone. d The biological 
code composed of the genetic and proteolipid codes
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adopt ordered states [36]. Several distinct zones that are 
each enriched in a particular type of protein may coex-
ist, such as those containing receptors and adaptors in T 
cells [37]. This indicates that compatible proteins induce 
their own zones rather than being recruited to preexist-
ing ones [21, 36]. Protein clustering is the simplest expla-
nation for protein-rich and lipid-only zones as well as the 
observation that not all of the former qualify as “rafts” 
[31]. Overall, the idea of integral protein recruitment to 
self-assembling lipid subregions should be rejected in 
favour of our proposal of zoning through the proteolipid 
code.

Zone recognition by peripheral proteins
Before describing how peripheral proteins create or 
remodel zones, it is useful to explain one way that they 
are recruited to zones in the first place. Many eukaryotic 
proteins bind phosphatidylinositol phosphates (PIPs) 
[23], which, like other lipids, are enriched or depleted in 
specific zones in each organelle membrane (Fig.  2b, c). 
For example, the early endosome (EE), trans-Golgi net-
work (TGN), and plasma membranes each respectively 
have PI3P, PI4P, and PI(4,5)P2 as signature lipids. We 
propose that proximal sets of lipids, especially includ-
ing PIPs, act as “lipid codons” or “lipidons” that repre-
sent zone-specific identities recognized by peripheral 
domains [22, 23]. Recognition of lipidons, sometimes 
with coinciding signals such as protein motifs, pH, or 
metal ions, explains how proteins with weak affinity for 
solitary molecules attach to membranes with sufficient 
strength [22]. Crystal structures [38–42] and molecular 
simulations [43–45] show in detail how multiple PIPs and 
other lipids reside in adjacent pockets in representative 
peripheral domains.

Zoning by peripheral proteins
As peripheral proteins bind lipidons, they will simulta-
neously manipulate the zone that they attach to [46, 47]. 
This is exemplified by the binding of immature human 
immunodeficiency virus Gag to the plasma membrane 
inner leaflet. The Gag polyprotein targets the plasma 
membrane by recognizing lipids via its matrix domain 
[48, 49], inducing large-scale sequestration of PI(4,5)
P2 as well as cholesterol while multimerizing to create a 
zone that cooperatively recruits more Gag monomers [8]. 
This flexes the plasma membrane until the nascent virion 
buds, where the enrichment of PI(4,5)P2 and cholesterol 
in the viral membrane signifies its origin from an induced 
zone [50]. The recognition of lipidons on protein islands 
can also create tubules and protein-coated pits [51–53]. 
To generalize, any force exerted on the membrane can 
induce, remodel, or maintain a zone [47], including inter-
cellular, cell wall, and cytoskeleton interactions.

The cytoskeleton
The actin-based cytoskeleton fixes to protein islands and 
is important for their stability [31]. It also induces zones 
such as lamellipodia, filopodia, podosomes, and inva-
dosomes by recognizing lipidons with actin adaptors [54, 
55]. Kusumi et al. propound that the cytoskeleton immo-
bilizes rows of integral proteins that maintain 40–300-
nm compartments on the plasma membrane through 
steric hindrance and hydrodynamic friction within the 
bilayer [13]. These compartments supposedly contain all 
other zones such as “rafts”. We disagree with this charac-
terization and believe that these “rafts” and their delimit-
ing “compartments” are one and the same; that is, they 
are protein islands attached to the cytoskeleton.

Regulation of zoning
Our theories imply that zoning is affected by membrane 
protein expression, degradation, and activity including 
enzymatic reactions that produce, convert, and degrade 
lipids. Enzymatic reactions may also create momentary 
void zones that are depleted in reactant or enriched in 
product, which can manifest as a molecular wave [56]. 
For peripheral proteins, post-translational modifications 
on lipidon attachment surfaces are positioned to impede 
or enhance zone recognition. For instance, phosphoryla-
tion and lysine modifications appear to reduce net posi-
tive charges and disrupt hydrogen bonds to segregate 
proteins from acidic lipids [57–59]. Conversely, covalent 
modification with lipids such as fatty acids, isoprenoids, 
and glycosylphosphatidylinositol can act as covalently 
attached lipidon components [21]. For example, farnesyl 
and geranylgeranyl groups may match zones with smaller 
and larger hydrophobic thicknesses, respectively. This 
would explain the diversity of lipid types that are attached 
to proteins.

Conclusions
It has been remarked that a single, comprehensive model 
of the membrane is no longer attainable [60]. This senti-
ment reflects an incohesive research programme where 
many hypotheses are available and inaccurate ones are 
not abandoned [13, 61, 62]. Among those that should be 
abandoned, the theory that proteins sort to lipid subre-
gions that form independently of proteins [6, 63] is fore-
most. That said, we do not mean to devalue lipid-lipid 
interactions, which maintain the membrane bilayer and 
influence zone attributes. Additionally, zone attributes 
can be used to condense the many hypotheses regard-
ing the membrane localization of peripheral proteins. 
We arrive at a model that incorporates the following 
principles:
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•	 Membranes are divided into zones which are their 
structural and functional building blocks and which 
are characterized by their primary, secondary, ter-
tiary, and quaternary attributes.

•	 Zoning has synchronous protein and lipid depend-
ency; therefore, the instructions for membrane func-
tion are specified in a proteolipid code.

•	 Integral proteins give rise to three zone types: inte-
gral proteins together with lipid fingerprints, protein 
islands, and lipid-only voids.

•	 Peripheral proteins and other membrane-binding 
objects modify zones by recognizing primary, sec-
ondary, and tertiary zone attributes.

•	 Zoning is regulated by changes in protein and lipid 
concentration or state, such as by enzymatic reac-
tions.

•	 The proteolipid code is interdependent with the 
genetic code, and together, they direct the flow of 
molecular information in cells.

Further to our final point, the proteolipid code com-
pletes the cycle of information that allows cells to func-
tion (Fig.  2d). This “biological code” can be understood 
to begin with DNA, which contains the information 
needed to make RNA and the amino acid sequences of 
proteins. Proteins create and interact with other biomol-
ecules to conduct most of the business of life, including 
synthesizing and engaging lipids to create membranes. 
Membranes are the apotheosis of the biological code as 
they enclose the entire cell and play a role in nearly all 
processes, including modulating transcription [64] and 
organizing ribosomal arrays [65]. The flow of information 
ends with the degradation of molecules, for instance, at 
proteasomes which cluster at the endoplasmic reticulum 
[66]. This cycle equips us to fathom the continuity of life.
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