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Abstract 

Background Plant diseases are driven by an intricate set of defense mechanisms counterbalanced by the expres‑
sion of host susceptibility factors promoted through the action of pathogen effectors. In spite of their central role 
in the establishment of the pathology, the primary components of plant susceptibility are still poorly understood 
and challenging to trace especially in plant‑fungal interactions such as in Fusarium head blight (FHB) of bread wheat. 
Designing a system‑level transcriptomics approach, we leveraged the analysis of wheat responses from a susceptible 
cultivar facing Fusarium graminearum strains of different aggressiveness and examined their constancy in four other 
wheat cultivars also developing FHB.

Results In this study, we describe unexpected differential expression of a conserved set of transcription factors 
and an original subset of master regulators were evidenced using a regulation network approach. The dual‑integra‑
tion with the expression data of pathogen effector genes combined with database mining, demonstrated robust 
connections with the plant molecular regulators and identified relevant candidate genes involved in plant susceptibil‑
ity, mostly able to suppress plant defense mechanisms. Furthermore, taking advantage of wheat cultivars of contrast‑
ing susceptibility levels, a refined list of 142 conserved susceptibility gene candidates was proposed to be necessary 
host’s determinants for the establishment of a compatible interaction.

Conclusions Our findings emphasized major FHB determinants potentially controlling a set of conserved 
responses associated with susceptibility in bread wheat. They provide new clues for improving FHB control in wheat 
and also could conceivably leverage further original researches dealing with a broader spectrum of plant pathogens.
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factors
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Background
The ascomycete fungus Fusarium graminearum (tele-
omorph Gibberella zeae) is the main causal agent of the 
Fusarium head blight (FHB) disease on bread wheat [1, 2]. 
Causing significant yield losses, grain quality alterations, 
and the accumulation of carcinogenic mycotoxins (e.g., 
deoxynivalenol, DON) [3–5], FHB represents a major 
threat for wheat production [6, 7] and results in critical 
economic losses reaching up to USD 1.176 billion over 
2015 and 2016 in the USA [8]. With rising temperatures 
and occasional increases in air humidity due to climate 
change, FHB outbreaks are expected to be more frequent 
and severe [9, 10], making it necessary to develop effi-
cient and sustainable management strategies [11]. Wheat 
resistance to FHB is a complex and strictly quantitative 
trait with more than 625 reported quantitative trait loci 
(QTLs) that displayed relatively minor effects especially 
when environmental conditions are conducive to the 
pathogen [12, 13]. Hence, further researches are needed 
to identify alternative sources of resistance to improve 
breeding strategies and to efficiently control FHB.

For the last 20 years, the multiple evidences of plant 
genes required for pathogen infection [14] have opened 
new opportunities to control natural immunity in plants. 
These genes, the so-called susceptibility genes, are 
involved in a wide range of plant fundamental processes 
that are hijacked by the pathogen through the delivery of 
a large repertoire of effectors [15–18]. Resistance based 
on the mutation of susceptibility genes (S genes) repre-
sents a promising alternative in breeding resistant culti-
vars, as exemplify by the broad-spectrum resistance to 
powdery mildew conferred by the natural mutation of the 
Mlo gene in barley [19]. In the wheat—F. graminearum 
pathosystem—the role of S genes in the interaction out-
come has already been demonstrated in several studies. 
For instance, the deletion of specific chromosome frag-
ments led to an increase of the resistance level, indicating 
the existence of key FHB S genes in the wheat genome 
[20–23]. Recently, direct functional evidences of the 
importance of FHB susceptibility factors in wheat were 
brought and revealed a high application value in increas-
ing wheat resistance to F. graminearum [24–30], the 
most striking example being the natural mutation in the 
TaHRC gene that might underlie the resistance conferred 
by the Fhb1 QTL [27, 28]. Thus, identify the FHB S genes 
in wheat that drive the compatibility of the interaction 
with F. graminearum turns out to be a powerful way to 
expand the sources of sustainable resistance.

Mining a reliable catalogue of S genes requires to 
deepen our understanding of the molecular cross-
talk between the two protagonists of the interaction 
[31, 32]. Biotic stress responses are based on complex 
signaling pathways involving signal perception, signal 

transduction, and expression of stress-responsive genes 
[33]. Through their role in triggering gene expression, 
transcription factors (TFs) play a pivotal role in the sig-
nal transduction step and orchestrate coordinated plant 
responses. As a consequence, TFs represent hub nodes 
of the stress molecular responses enabling the activa-
tion or the repression of a large set of downstream tar-
get genes [33–35]. Although their characteristics make 
them important pathogen’s targets to control host plant 
responses [18, 36] and thus interesting gene candidates to 
take advantage of complex trait improvement, the com-
plexity of their regulation network requires to identify 
the downstream genes involved in the stress responses 
as well as all the impacted biological processes. Many 
studies have already reported the nature and diversity 
of wheat responses to F. graminearum using successful 
large-scale -omics studies [37–48]. However, no attempt 
has been made to decipher the complexity of the under-
lying regulation networks and its robustness when fungal 
strain of different aggressiveness and cultivars of con-
trasted susceptibilities are considered.

In this study, the molecular components underlying 
FHB susceptibility in bread wheat as well as their regula-
tion processes are addressed using a mRNA sequencing 
(RNAseq)-based profiling of responsive genes during a 
time course FHB infection. This comprehensive analy-
sis has been conducted by merging information from (i) 
the characterization of the regulation network orches-
trating the responses of a highly susceptible wheat cul-
tivar facing three F. graminearum strains of contrasting 
aggressiveness, (ii) the identification of S gene candidates 
through the integration of wheat responses to FHB with 
the expression data of fungal effector genes [49], and (iii) 
the characterization of the expression of these S gene 
candidates in different wheat cultivars of contrasting sus-
ceptibility (Fig. 1).

Results
FHB development in bread wheat cultivars
The dynamics of symptom development was evaluated 
in the five wheat cultivars using a logistic model applied 
on the measured score symptoms. Although no signifi-
cant difference was observed for the maximum score 
symptom (Asym) reached at 168 h post inoculation 
(hpi), the time required to reach 50% of this maximum 
score (xmid) was significantly shorter in “Recital” than in 
“Arche,” “Courtot,” and “Chinese Spring” (Fig. 2). “Renan” 
also reached 50% of the maximum score symptom (xmid) 
in a significantly shorter time than both “Arche” and 
“Chinese Spring.” In “Recital,” the time required to switch 
from 50 to 75% of the maximum score symptom (scal) 
was significantly lower than the one measured in other 
cultivars except in “Renan.” To refine the susceptibility 
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ranking of the five cultivars, we performed a hierarchical 
ascending clustering (HAC) on the three logistic regres-
sion parameters (Fig.  2 inset). It clearly discriminated 
“Recital” from the four other cultivars that were divided 
into two distinct groups with “Renan” that was separated 
from “Arche,” “Chinese Spring,” and “Courtot.” Based 
on the disease progress modeling, a susceptibility rank-
ing of the cultivars was established as follows: “Recital” 
(high susceptibility), “Renan” (intermediate susceptibil-
ity), “Arche,” “Courtot,” and “Chinese Spring” (moderate 
susceptibility).

Transcriptional landscape of early FHB responses 
in the most susceptible wheat genotype “Recital” facing 
different fungal strains revealed conserved changes
A total of 49,505 genes were found to be expressed in 
Recital and were used for the differential expression 
(DE) analysis. DE results were classified into 16 catego-
ries (Additional file 1: Table S1). Among the 41,891 dif-
ferentially expressed genes (DEGs), we selected genes 

differentially expressed in response to at least one 
fungal strain in comparison to the control (M) condi-
tions (treatment and interaction effects). This resulted 
in a FHB-responsive gene set composed of 38,818 
genes (92.6% of the whole DE gene set, Fig. 3A) includ-
ing 26,779 genes that were systematically regulated 
whatever the inoculated fungal strain (“All strains”-
responsive gene set; 69% of the FHB-responsive gene 
set). Only 6509 and 5530 genes were differentially 
expressed in response to two of the three strains 
(“Strain accessory”-responsive gene set) and to one 
strain (“Strain specific”-responsive gene set), respec-
tively. Overall, the magnitude of “Recital” responses 
to the three strains increased along with the infec-
tion progress (Fig.  3B). At 48 hpi, around 66% of the 
differences in gene expression between MDC_Fg1-, 
MDC_Fg13-, MDC_FgU1-inoculated and mock plants 
(fold changes, FC) did not exceed a twofold increase or 
decrease (− 1 ≤ Log2(FC) ≤ 1). At 72 hpi and 96 hpi in 
contrast, FC greater than twofold increase or decrease 

Fig. 1 Overview of the approach used to decipher the mechanisms underlying wheat susceptibility to FHB and to identify relevant susceptibility 
genes
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(Log2(FC) <  − 1 or Log2(FC) > 1) accounted for an aver-
age of 56% and 76% of the FHB-responsive genes what-
ever the inoculated strain, respectively.

To gain a better understanding of the strain impacts 
on wheat gene expression along with the infection pro-
gress, we computed a partial least square discriminant 
analysis (PLS-DA) on the “All strains”-responsive gene 
set trying to discriminate strain × time-point combina-
tions (Fig.  3C). The first component, explaining 70% 
of the total variance, clearly discriminated the three 
infection stages, with 72 hpi acting as a transition 
phase between 48 and 96 hpi. The second component, 
explaining 8% of the variance, slightly discriminated the 
wheat responses to MDC_Fg1 from the ones induced 
with the two other strains at 72 hpi and 96 hpi. These 
results were confirmed by the HAC of the infected 
samples on the “All strains”-responsive gene set (Addi-
tional file  2: Fig. S1). In line with this, 93% of the “All 
strains”-responsive genes did not display any strain 
effect, emphasizing that “Recital” cultivar displayed 
similar quantitative responses to the three strains.

The FHB development induced major readjustments 
in the abundance of key wheat transcriptional regulators 
independently of strain aggressiveness
The “All strains”-responsive genes demonstrated a repro-
gramming and temporal adjustments of the “Recital” 
transcriptome along the infection progress with two bal-
anced gene groups (Additional file  2: Fig. S1). The first 
group, gathering 12,160 genes, displayed higher expres-
sion levels in control samples than in the infected ones, 
with a continuously decreasing gene expression along 
with the infection progress. On the opposite, the second 
group, gathering 14,619 genes, displayed lower expres-
sion levels in the control samples than in the infected 
ones depicting a continuously increasing gene expres-
sion along with the infection progress. The search of 
transcription factors among this “All strains”-responsive 
gene set identified 1074 TF encoding genes belonging to 
53 TF families. In comparison with the whole expressed 
gene set, the “All strains”-responsive gene set was sig-
nificantly enriched in TF genes (p-value < 1.5 ×  10−12) 
with the over-representation of the AP2/ERF-ERF, NAC, 

Fig. 2 Dynamics of symptom development in the cultivars “Arche,” “Courtot,” “Chinese Spring,” “Recital,” and “Renan.” For each cultivar, symptom 
development was evaluated according to a logistic model (colored curves). The inset clustering tree represents the HAC performed on the logistic 
parameters
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Tify, and WRKY TF families (corrected p-value < 0.05). 
Two expression groups were clearly identified including 
a set of 324 TF genes which were over-expressed in con-
trol samples in comparison with the infected ones and 
another set of 750 TF genes which were under-expressed 
in control samples in comparison with infected sam-
ples. TF genes belonging to the same family displayed 
similar expression patterns: the B3, B3-ARF, C2C2-CO-
like, C2C2-YABBY, MADS_MIKC, mTERF, and Whirly 
families were mostly downregulated in response to FHB, 
while AP2/ERF-ERF, AP2/ERF-RAV, CAMTA, LOB, 
MYB, NAC, PLATZ, Tify, and WRKY families were 
mostly upregulated along with the infection progress 
(Fig. 4 and Additional file 1: Table S2).

FHB induced the reprogramming of a wide array 
of biological processes
Downregulated genes in response to the three strains 
were enriched in 312 biological process (BP) subcatego-
ries (Additional file 1: Table S3A). Those categories were 
mainly associated with fundamental biological processes. 
Primary metabolism was widely impacted through sev-
eral processes: photosynthesis (mainly through light 
harvesting), polysaccharide and monosaccharide syn-
thesis, and starch metabolism, as well as amino acid and 
nucleotide synthesis. Cell and tissue structure was also 
altered at several scales including cytoskeleton and orga-
nelle structure as well as plasma membrane and cell wall. 
Several other cell basal functions were disturbed through 

Fig. 3 Characterization of “Recital” responses to the three strains of contrasting aggressiveness. A The structure of the FHB‑responsive gene 
set is represented by an upset plot describing the number of genes significant for one (“Strain specific”‑responsive gene set), two (“Strain 
accessory”‑responsive gene set), or three (“All Strain”‑responsive gene set, blue bar) strain‑control comparisons. B The variation amplitudes of gene 
expression for each strain‑control comparison at 48 hpi, 72 hpi, and 96 hpi were represented with spider charts. Spider chart describes the log2(FC) 
between each strain (MDC_Fg1 in pink, MDC_Fg13 in yellow and MDC_FgU1 in green) and control. Colored points indicate the proportion 
of genes belonging to each of the nine log2(FC) ranges. Extreme values were the maximum and minimum log2(FC) of all time points and strain 
control comparisons. A negative log2(FC) indicates a lower expression level in the infected condition than in the control one, and a positive 
log2(FC) indicates a higher expression level in infected condition than in the control one. Spider plots are composed of two grid circles, 
the middle grid circle indicating 25% and the maximum grid circle indicating 50%. C “Recital” experimental conditions were classified according 
to the “All strain”‑responsive gene set. PLS‑DA method was applied on the 26,779 genes responsive to the three F. graminearum strains to predict 
the strain‑infection progress combinations. The plots of the individuals extracted from the PLS‑DA are represented on the two first components. 
For each condition, confidence ellipses are plotted to highlight discrimination strength (level set to 95%). D The complexity of the regulation 
network controlling “Recital” FHB responses is illustrated by a directional network plot. Network was built using TF genes as regulators of all FHB 
responsive genes, meaning that some TF genes are targets of other TFs, the master regulators. The figure shows the targets of one master regulator 
(yellow node), TraesCS1B02G318800. Direct edges connecting the master regulator to its targets are indicated by yellow arrow. Master regulator’s 
target genes are indicated in blue for the TF genes and in red for the not TF genes. Blue arrows represent the direct edges between the regulated TF 
genes and their own targets
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the downregulation of genes involved in transduction, 
transport, protein sorting, transcription, and DNA repair 
and modification. Likewise, reproductive and cell cycle-
related process were impacted and concerned 30% of the 
enriched BP terms including mitosis, meiosis, replica-
tion, chromosome separation, ovule, and embryo devel-
opment and responses to auxin and cytokinin. Genes 
involved in terpenoid synthesis and in the negative regu-
lation of the immune response were also downregulated 
along with the infection progress.

Upregulated genes in response to the three strains 
were enriched in 174 BP subcategories (Additional file 1: 
Table S3B). Genes involved in responses to several phy-
tohormones, including gibberellin, salicylic acid, jas-
monic acid, abscisic acid, cytokinin, and ethylene, were 
induced in response to the different F. graminearum 
strains. Genes involved in the synthesis of signaling spe-
cialized metabolites (chorismate, indolalkylamine, olefin, 
amine compounds, and oxylipin) were also over-repre-
sented. The biotic stress response associated categories 

Fig. 4 Expression regulation patterns of the “All Strain”‑responsive gene set responsive TF encoding genes along with the infection progress 
“Recital.” The structure of gene and sample data sets were determined by HAC based on Ward’s minimum variance method using the z‑score 
transformed gene expression values. Heatmap color scales represent the z‑score transformed expression values of the TF genes from the All 
strain‑responsive gene set for each condition. The clustering on top of the heatmap represents the experimental conditions which are labeled 
according to the factors infection progress and treatment. On the right side of the heatmap, TF genes were grouped and colored according to their 
TF family
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(e.g., “systemic acquired resistance,” “receptor signaling,” 
“chitin catabolism”) as well as genes involved in the syn-
thesis of several defense specialized metabolites (e.g., 
“sulfur containing compounds,” “phenylpropanoids,” 
“phenol compounds,” “trehalose,” and “prephenate”) were 
sharply activated along with the infection. The antioxi-
dant machinery was also activated during the infection 
progress with the over-representation of genes involved 
in the reactive oxygen species (ROS) catabolism, in the 
detoxification processes, and in the synthesis of antioxi-
dant specialized metabolites such as the glutathione and 
amine compounds. Genes associated with ion transport, 
calcium, ammonium, and metal ions as well as the trans-
membrane transport of carbohydrates were upregulated. 
Cell integrity seems to be altered with an enrichment in 
the catabolism of several cell wall components: xylan, 
lignin, and amino-glycan. However, genes involved in the 
synthesis of cinnamic acid associated with the lignifica-
tion process were also upregulated along with the infec-
tion progress as were the genes involved in pollen pistil 
interaction, protein ubiquitination and lipid catabolism.

Establishing the transcription factor regulation network 
of FHB responses and searching for their master regulators
From the “All strains”-responsive gene set described in 
the single “Recital” susceptible cultivar facing the three 
different F. graminearum strains, we selected genes that 
were systematically expressed in the four other wheat 
cultivars (cv. “Arche,” “Courtot,” “Chinese Spring,” and 
“Renan”). As a whole, 20,629 genes (77% of the “All 
strains”-responsive gene set) were found in all cultivars 
regardless of their susceptibility level and were used 
to build the TF regulatory network of FHB responses. 
Among these genes, 772 were predicted to encode TFs. 
To establish the network, a set of 269 regulators were 
defined among which 16 corresponded to groups of 
highly correlated TFs (> 95% in absolute value). Statisti-
cal tests performed on the network edges led to a direc-
tional network composed of 9791 nodes and 28,581 
edges (Additional file 3: R object S1). Within this TF reg-
ulatory network of FHB responses, we identified 91 mas-
ter regulator nodes, i.e., a regulator node that regulated 
other regulator nodes without being regulated itself. 
Among these master regulator nodes, seven were groups 
of highly correlated TFs leading to a total of 427 master 
TFs (Additional file  1: Table  S4). These master regula-
tors belonged to 44 families, including four main families 
that gathered nearly half of the set, i.e., the WRKY (71 
genes), the NAC (57 genes), the AP2/ERF-ERF (41 
genes), and the MYB (40 genes) families. For example, 
TraesCS1B02G318800, encoding a MYB TF, had 34 tar-
gets including two TF genes, TraesCS6D02G362900 and 
TraesCS3D02G231200, which had 74 and 32 targets, 

respectively (Fig. 3D). Most of the master regulators were 
induced in response to the FHB infection (Fig. 5A, Addi-
tional file  1: Table  S4); 368 master TF genes (cluster 2) 
were over-expressed in infected samples in comparison 
with controls, while only 59 (cluster 1) were downregu-
lated during the infection process.

Leveraging F. graminearum effector expression dynamics 
to identify susceptibility gene candidates
To identify putative susceptibility genes (S genes) tar-
geted by F. graminearum effectors, we computed a sec-
ond directional network using 46 nuclear core effectors 
of the three F. graminearum strains [49] as putative regu-
lators of the 20,629 FHB responsive genes expressed in all 
wheat cultivars. Statistical tests performed on the edges 
led to a directional network composed of 17,393 edges 
connecting 41 nuclear effectors to 12,866 wheat targets 
(Additional file 3: R object S2), of which 6485 were also 
part of the TF regulatory network of FHB responses. FHB 
responsive genes which were not TFs represented 12,362 
genes, of which 5981 were also found to be targeted by 
wheat TFs in the previous network. TF genes were signif-
icantly enriched (p-value < 0.05) within the effector reg-
ulation network, with a total of 504 genes targeted by F. 
graminearum nuclear effectors. Among them, 338 genes 
were identified as master regulators in the TF regulatory 
network of FHB responses.

As a whole, 233 wheat genes (Additional file  1: 
Table S5) targeted by F. graminearum effectors matched 
with known S genes [16, 31, 50], including 8 genes that 
were validated in the wheat—F. graminearum pathosys-
tem [24, 26, 29, 51, 52]—and 183 genes that were asso-
ciated with defense suppression. A total of 147 S genes 
were found to be part of the TF regulatory network of 
FHB responses, of which 41 were master TFs and 26 were 
TFs. Among the 41 master TF putative S genes, we found 
33, 4, and 4 genes belonging to the WRKY, MYB, and 
NAC families, respectively. Among the 26 TFs that were 
not considered as master regulators, three families were 
found, including the MYB, WRKY, and EIL families that 
gathered 17, 7, and 2 genes, respectively.

Expression signatures of the putative S genes 
in the susceptible wheat cultivar
As a whole, the 233 identified putative S genes were 
mostly induced in response to FHB, including 177 
genes which were upregulated along with the infec-
tion progress and 4 genes over-expressed at 48 hpi 
only in infected samples (Fig. 5B and Additional file 1: 
Table S5) in comparison to control samples. Downregu-
lated patterns in response to FHB were observed for 52 
genes (Fig. 5B and Additional file 1: Table S5). Among 
the S genes involved in defense suppression, 149 genes 
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were induced in response to FHB while 34 were down-
regulated. Regarding the master regulators, all the 
WRKYs and NACs as well as three of the four MYBs 
were induced in response to FHB while only one MYB 
was downregulated. Concerning the other TFs, all the 
WRKYs and EILs as well as 13 MYBs were also induced 

in response to FHB while only 4 MYBs were downregu-
lated. For the non-TF S genes, 115 were induced along 
with the FHB progress with the maximum of expres-
sion reached at 96 hpi, four were over-expressed in 
infected samples at 48 hpi, and 47 were over-expressed 
in controls.

Fig. 5 Expression regulation patterns of A the master TF regulating FHB response and B the 233 putative susceptibility genes targeted by F. 
graminearum nuclear effectors in “Recital” facing 3 strains of contrasting aggressiveness. The structure of gene and sample data sets were 
determined by HAC based on Ward’s minimum variance method using the z‑score transformed gene expression values. Heatmap color 
scales represent the z‑score transformed expression values of the genes for each condition. The clustering on top of the heatmap represents 
the experimental conditions which are labeled according to the factors infection progress and treatment. On the left side of the first heatmap (A), 
genes were colored according to their cluster membership
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Did putative FHB susceptibility genes discriminate 
different wheat genetic background?
To identify specific cultivar’s FHB responses, we per-
formed a principal component analysis (PCA) on the S 
gene set for each time point (Fig. 6A) as well as statisti-
cal tests on their components. For all the 3 time points, 
the first component, which explained 54.8%, 80.2%, 
and 84.7% of the variance at 48 hpi, 72 hpi, and 96 hpi 

respectively, significantly discriminated the infected 
samples from the control ones. At 48 hpi, the position 
of the infected “Courtot” responses on the component 
1 was significantly different from infected “Arche,” “Chi-
nese Spring,” and “Renan” responses, and the position 
of infected “Recital” was significantly different from 
infected “Renan” responses. At 48 hpi, the second com-
ponent (8.7%) was significantly driven by the infected 

Fig. 6 FHB responses of the five cultivars on the 233 putative S genes at 48 hpi, 72 hpi, and 96 hpi. A PCAs were computed on the z‑score values 
of the S gene set at each time point. The plots of the individuals extracted from the PCAs are represented on the two first components, on which 
statistical tests were performed. B For each time point, a spider chart describes the log2(FC) of the S genes between infected and control conditions 
in “Arche,” “Courtot,” “Chinese Spring,” “Recital,” and “Renan.” Colored points indicate the proportion of genes belonging to each of the seven log2(FC) 
ranges in each cultivar. Extreme values were the maximum and minimum log2(FC) of all comparisons. A negative log2(FC) indicates a lower 
expression level in the infected condition than in the control one and a positive log2(FC) indicates a higher expression level in infected condition 
than in the control one. Spider charts are composed of two grid circles, the middle grid circle indicating 27.5% and the maximum grid circle 
indicating 55%
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“Arche” responses. At 72 hpi, the position of infected 
“Recital” responses on the component 1 was significantly 
different from infected “Arche” and “Courtot” responses, 
and the position of infected “Chinese Spring” was sig-
nificantly different from infected “Arche” responses. At 
72 hpi, the second component (4.2%) significantly dis-
tinguished the infected samples of “Arche” and “Cour-
tot” from the infected samples of “Recital.” At 96 hpi, the 
position of infected “Recital” on component 1 was signifi-
cantly different from all other infected cultivars, while the 
component 2 (4.8%) significantly discriminated infected 
condition from the control one for all cultivars as well as 
the infected “Recital” from all other infected cultivars.

The magnitudes of FHB responses were different 
between the 5 cultivars (Fig.  6B). This can be notably 
observed at the low FC ranges. At 48 hpi, “Renan,” “Chi-
nese Spring,” and “Arche” displayed a relatively high 
proportion of low FC responses (− 1 ≤ Log2(FC) ≤ 1), 
including 71.24%, 69.96%, and 66.95% of the S genes 
respectively. Such low FC responses only represented 
58.8% and 54.08% of the S genes in “Recital” and “Cour-
tot” respectively. At 72 hpi, “Arche” and “Courtot” dis-
played 52.8% and 49.36% of the S genes with a Log2(FC) 
between − 1 and 1, while it accounted for only 24.9%, 
17.17%, and 15.88% in “Renan,” “Chinese Spring,” and 
“Recital.” At 96 hpi, we distinguished two opposite pat-
terns of responses with “Courtot” displaying 41.63% 
of the S genes with a Log2(FC) between − 1 and 1 while 
“Recital” displayed 93.13% of the S genes with a Log2(FC) 
above 1 or below − 1. “Chinese Spring,” “Renan,” and 
“Arche” displayed 23.18%, 20.6%, and 18.45% of the S 
genes with a Log2(FC) between − 1 and 1. In the HostV 
experiment, 142 out of the 233 putative S genes displayed 
significant differences between control and infected 
samples for all 5 cultivars, of which 119 were involved 
in defense suppression and 53 encoded TFs. Almost all 
those 142 conserved S genes, except 5 genes, were over-
expressed along infection progress in all 5 cultivars 
(Additional file 2: Fig. S2). With a total 224 DEGs in the 
HostV experiment, “Recital” displayed the highest num-
ber of FHB responsive DEGs. “Chinese Spring,” “Arche,” 
“Renan,” and “Courtot” respectively displayed 215, 193, 
171, and 159 FHB responsive DEGs.

Genomic localization of the putative FHB susceptibility 
genes
The distribution of the S genes on the wheat genome 
was balanced at the sub-genome level with 77, 76, and 
77 genes localized on the sub-genomes A, B, and D, 
respectively (Additional file 2: Fig. S3). S genes were also 
localized over all the 21 wheat chromosomes (Table  1). 
Localization on the unknown chromosome accounted for 
three genes. A total of 2 and 1 genes were found within 

the susceptibility intervals validated by Garvin et al. [21] 
and by Hales et al. [22], respectively. A total of 27 S genes, 
including two genes validated in the wheat–F. gramine-
arum pathosystem, TaHRC [51] and TaEIN2 [52], were 
also found within the 118 known FHB meta-QTLs 
(13; Additional file  2: Fig. S3) on 16 different chromo-
somes. Among the 27 S genes, six genes including three 
WRKYs, two NACs, and a single MYB were identified as 
master regulators in the TF regulatory network of FHB 
responses. The 21 other genes were not TF genes. All 
master TF genes, except the MYB TF gene, were over-
expressed in infected samples in comparison to the con-
trol samples. Regarding the non-TF genes, 13 genes were 
over-expressed in infected samples in comparison to the 
controls while 8 genes were under-expressed.

Discussion
Using F. graminearum strains of contrasting aggressive-
ness, we searched for consistent FHB induced transcrip-
tional responses that are supposed to drive the infection 
process in ‘Recital,” a susceptible wheat cultivar. Gene 
regulatory network modeling as well as the responses 
from cultivars of different susceptibility to FHB were 
then leveraged to thoroughly characterize the regulation 

Table 1 S gene distribution on the wheat genome

Chromosome S gene 
number

chr1A 11

chr1B 10

chr1D 15

chr2A 13

chr2B 13

chr2D 13

chr3A 11

chr3B 9

chr3D 9

chr4A 15

chr4B 15

chr4D 12

chr5A 11

chr5B 10

chr5D 9

chr6A 8

chr6B 10

chr6D 8

chr7A 8

chr7B 9

chr7D 11

chrUn 3
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processes as well as to identify robust susceptibility genes 
that might be targeted by F. graminearum.

Wheat response to FHB is driven by specific master 
regulators that control a complex gene regulation network
Transcriptome profiling of “Recital” responses to the 
three F. graminearum strains of contrasting aggressive-
ness revealed an early and sharp alteration of wheat spike 
basal functioning through the downregulation of genes 
involved in primary metabolism, in spike development 
and in cell structure, while genes involved in signaling 
pathways, biotic stress responses, and detoxification pro-
cesses were steeply induced from the infection outset. 
The control of “Recital” transcriptome reprogramming in 
response to FHB involves a large number of TFs and TF 
families. Examining the relationship between these regu-
lators showed that FHB-responsive TFs displayed highly 
correlated expression patterns and evidenced major 
regulation hubs of the FHB responses. Four TF families, 
the WRKY, NAC, AP2/ERF, and MYB families, that rep-
resented a total of 209 master regulator gene candidates 
induced along infection progress, were distinguished for 
their central role in FHB responses. Those four families 
are well-known key players of biotic stress response that 
can positively or negatively affect the setup of defense 
mechanisms contributing to either resistance or sus-
ceptibility [33, 53–55]. In wheat resistant lines facing F. 
graminearum, two NAC TFs, the TaNAC032 [56], and 
the TaNACL-D1 [57], as well as one WRKY TF, the TaW-
RKY70 [58], were already been associated with the setup 
of defense mechanisms, such as in lignin synthesis and in 
resistance-related induced (RRI) metabolite production. 
On the opposite, the two NAC TFs, TaNAC2 [59] and 
TaNAC30 [60], were shown to negatively regulate ROS 
accumulation and to increase wheat susceptibility to Puc-
cinia striiformis. In line with our results, those TF fami-
lies were proved to be organized in complex regulation 
networks involving autoregulatory processes, including 
intra-family cross-regulatory processes  [54, 61–64] and 
inter-family cross-regulatory processes [65, 66]. This 
concerted transcriptional modulation could represent an 
efficient way to target multiple biological processes and 
to set up fine-tuned responses to the fungal infection.

Master regulators of FHB responses: targets of fungal core 
effectors and key players of FHB susceptibility
Integrating expression data from both protagonists of 
the interaction highlighted that transcription factors and 
especially master regulators could represent main direct 
or indirect targets of F. graminearum core nuclear effec-
tors. As in the transcription network of FHB responses, 
we found that the four most represented families among 
the expected targeted TFs were the WRKY, NAC, MYB, 

and AP2/ERF families, strengthening their prime role 
in regulating FHB responses. Those families were previ-
ously shown to be upregulated in the “Shaw” suscepti-
ble wheat cultivar in response to F. graminearum [42]. 
TF manipulation by direct or indirect action of effec-
tors were described in many plant-fungus interactions. 
Direct interactions between effectors and plant TFs were 
described in the symbiotic fungi Glomus intraradices that 
secretes the SP7 effector which interact with the AP2/
ERF19 TF of Medicago truncatula in order to deactivate 
defense responses [67] but also in the hemibiotrophic 
fungi Verticillium dahliae with the VdSCP41 effector that 
targets the two transcription factors CBP60g and SARD1 
in A. thaliana to alter their immunity functions [68]. An 
example of indirect effect on a plant TF was described in 
the biotrophic pathogen Ustilago maydis that secretes 
the Tin2 effector which prevents the degradation of 
the ZmTTK1 protein kinase which in turn triggers the 
nuclear addressing of the ZmR1 maize TF [69].

Hijacking of plant defense and immune responses, 
a conserved strategy determining FHB susceptibility 
in wheat
Merging the S genes database and the F. graminearum in 
planta targets, we identified 233 S genes putatively tar-
geted by F. graminearum core nuclear effectors (Fig.  7), 
of which 64% were induced along with the infection 
progress and were proved to have a role in defense sup-
pression with a wide range of mechanisms [16, 31, 50]. 
Interestingly, our integration approach shed light on 
8 genes already validated as S genes in the wheat–F. 
graminearum pathosystem including the TaHRC gene 
that underlies the Fhb1 QTL [27, 28] and that was 
induced in response to F. graminearum infection. The 
multi-gene model underlying the Fhb1 QTL points out 
that TaHRC [27, 28] operates as a susceptibility factor 
through the inhibition of the calcium-mediated defense 
response [51] and that its activity leads to the repres-
sion of the WFhb-1 gene involved in antifungal activity 
[70]. Further evidences in the wheat–F. graminearum 
strategy also support the key role of defense suppressor 
genes in the compatibility of the interaction, such as the 
induction of several genes found to be nuclear effector 
targets, TaSSI2 [26], TaLpx-1 [24], and TaNFXL1 [29], 
which are involved in the suppression of salicylic acid 
(SA)-mediated defenses. In this study, we also identified 
nine Mildew resistance locus O (Mlo) gene homologues 
that were upregulated upon FHB infection. Encoding a 
membrane protein involved in the negative regulation of 
immunity, Mlo is a well-characterized susceptibility gene 
in barley and wheat to the biotroph pathogen Blumeria 
graminis and its KO mutation confers a broad-spectrum 
resistance [71–73]. Resistance through the silencing of 
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Mlo genes was also reported in pathosystems involving 
necrotrophs such as in the Cucumis sativus–Corynespora 
cassiicola interaction [74]. Six more upregulated genes 
matching the DMR6 gene of A. thaliana suggest another 
mechanism of defense suppression through the degrada-
tion of salicylic acid (SA), known to trigger the defense 
responses against biotrophic and hemibiotrophic patho-
gens [75, 76]. Because the A. thaliana DMR6 gene and 
its barley orthologue were proved to promote FHB sus-
ceptibility [77], those six wheat genes represent reliable 
candidates S genes for further functional validation. Fur-
thermore, TFs were also largely represented among the 
putative S genes involved in defense suppression with 64 
TFs genes (96% of the effector targeted TF genes with a 
match in the S genes database) induced along infection 
progress, belonging to the WRKY (38 genes), NAC (4 
genes), MYB (20 genes), and EIL (2 genes) families. For 
instance, they included the three TaWRKY61 homoeo-
logues validated in the wheat–Puccinia striiformis inter-
action that are positive regulators of the TaSTP3 sugar 
transporter, found among our targets, and whose induc-
tion in response to infection results in cytoplasmic sugar 
accumulation and suppression of defense-related genes 
[78]. By interacting with TF genes, F. graminearum 
appears to repress pivotal components of cell immu-
nity, and in this respect, it could be able to manipulate 
at a systemic scale a wide array of defense-related pro-
cesses (Fig.  7). This large number of putative targeted 
wheat genes appears consistent with the highly complex 
and fragmented nature of the FHB resistance controlled 

by 625 QTLs distributed throughout the genome [12, 
13]. All the meta-QTLs, within which were localized our 
putative S genes, were associated with spreading within 
the spike, and 16 were also associated with mycotoxin 
accumulation [13]. Taken together, these evidences indi-
cate that F. graminearum targets several defense path-
ways and partly suppresses plant defense mechanisms to 
promote its successful establishment and development in 
the spike. This infection strategy deduced from the plant 
responses was further demonstrated to be highly con-
served in response to the three F. graminearum strains. 
This finding fully corroborates previous results reporting 
that the same three strains shared 90% of their in planta-
established effectome [49].

While F. graminearum was able to infect the 5 wheat 
cultivars, only 61% of the S genes were significantly regu-
lated in all the cultivars. Thus, pathogen’s establishment 
in cultivars of contrasting susceptibility appeared to rely 
on a conserved corpus of S genes successfully manipu-
lated in all wheat genetic backgrounds. The most suscep-
tible wheat cultivar “Recital” was clearly discriminated 
from the 4 others in terms of DEG number and response 
amplitude. However, there were no clear link between 
the susceptibility level of the 4 other cultivars and their 
differences observed at the transcriptomic level. This 
exemplifies the complex nature of wheat–F. gramine-
arum interaction and might highlight some redundancy 
in the processes targeted by F. graminearum effectors. 
Taking advantage of different wheat cultivars with con-
trasting susceptibility level, this provides a robust list of 

Fig. 7 Representation of the susceptibility mechanism underlying the wheat–F. graminearum interaction. Integrating the expression data 
from both wheat and F. graminearum as well as using the genetic variability from both species allowed to identify 142 conserved susceptibility 
genes. The manipulation of the regulation hubs as well as negative regulators of plant immunity in order to suppress the defense response 
appeared to be a key step in the infectious process of F. graminearum 
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142 susceptibility gene candidates, including 119 defense 
suppressors and 53 TF genes, that responded to several F. 
graminearum strains and systematically regulated in dif-
ferent wheat genetic backgrounds. Since almost all these 
conserved S genes were induced in response to infection, 
the suppression of plant immunity appears to be a pivotal 
step in F. graminearum establishment success regardless 
of the fungal strain and the wheat cultivar (Fig. 7).

Conclusions
To conclude, using a system-level transcriptomics data 
integration and mining genetic variability on both host 
and pathogen sides, we discovered unexpected conserved 
responses of wheat facing FHB. This portrays a distinc-
tive signature of the intricate mechanisms that drive the 
outcome of the wheat–F. graminearum interaction and 
further enabled to delineate a set of core-transcription 
factors putatively involved in the orchestration of sus-
ceptibility factors. Such robust conservation empha-
sizes that wheat susceptibility to FHB could be one of 
the main drivers of disease establishment and, as such, 
reshapes the way we consider plant responses to patho-
gens beyond the role and expression of the defense genes 
alone. In addition to their involvement in FHB, the iden-
tified candidate S genes could conceivably be of genetic 
value in controlling a broader spectrum of pathogens [17, 
79, 80], providing original clues for further researches.

Methods
Experimental designs and plant sample production 
for transcriptomic analyses
To perform a comprehensive characterization of wheat 
responses to FHB, a first experiment, referred to as 
PathoV, was conducted on the susceptible wheat cultivar 
“Recital” which was inoculated with three F. gramine-
arum strains of contrasting aggressiveness (MDC_Fg1, 
MDC_Fg13 and MDC_FgU1; in decreasing order of 
aggressiveness [81]) or with water as control. To study 
the FHB responses of different wheat genetic back-
grounds, a second experiment referred to as HostV was 
conducted on five cultivars of contrasting susceptibility, 
“Arche” (ARC), “Courtot” (COU), “Chinese Spring” (CS), 
“Recital” (REC), and “Renan” (REN); all were inoculated 
with the aggressive strain MDC_Fg1 or with water as 
control. The two experiments were conducted to collect 
samples at 48, 72, and 96 h post inoculation (hpi), which 
cover a pre-symptomatic period and the symptom onset 
stage [45]. Spore production as well as detailed plant 
growth conditions are described in Rocher et  al. [49]. 
Complete factorial experiments were designed for both 
experiments. For the first experiment, the combinations 
of the four treatment conditions (three strains + one con-
trol) and the three time points were measured on four 

biological replicates (except for MDC_Fg13 × 72 hpi con-
dition with three replicates) that represented a total of 47 
samples. For the second experiment, the combinations 
of the five cultivars, the two treatment conditions, and 
the three time points were measured on three biologi-
cal replicates that represented a total of 90 samples. Each 
experiment was surrounded by additional plants to limit 
any edge effect. F. graminearum strains were inoculated 
at mid-anthesis with 10 μL of a solution at a concentra-
tion of  105 spores/mL in the floral cavity of the six central 
spikelets of three synchronous flowering spikes (totaling 
18 spikelets per biological replicate). For the mock sam-
ples, water was inoculated according to the same pro-
cedure. For each individual plant, only the inoculated 
spikelets were collected and immediately placed in liquid 
nitrogen. Samples were ground in fine powder and stored 
at − 80 °C before RNA extractions.

RNA extraction and sequencing
The detailed procedures have already been described in 
Rocher et al. [49]. From 100 mg of frozen powder, total 
RNA extraction was performed using a TRIzol protocol 
(TRI reagent®, Sigma-Aldrich, St. Louis, MO, USA), fol-
lowed by a FastDNase treatment (TURBO DNA-freeTM 
Kit, Thermo Fisher Scientific, Waltham, MA, USA). Sam-
ple quality was controlled by electrophoresis with 1% aga-
rose gel buffered in Tris–Acetate-EDTA. A total of 10 μg 
per sample was used for sequencing. The cDNA libraries 
were produced using the TruSeq Stranded preparation 
kit reverse oriented (Illumina, San Diego, CA, USA). For 
both experiments, 2 × 150 base paired-end sequences 
were generated. Samples of the first experiment dealing 
with the single cultivar “Recital” were sequenced using 
Illumina NovaSeq6000 at GeT platform of GenoTOUL 
[82], and the samples of the second experiment dealing 
with the five wheat cultivars were sequenced using Illu-
mina HiSeq4000 and NovaSeq6000 at the Genoscope, 
the French National center of sequencing [83].

RNA‑Seq bioinformatic analysis
Sequencing data obtained from both PathoV and HostV 
experiments were analyzed separately, using a host–
pathogen genome mapping approach. Calculations were 
performed on the supercomputer facilities of the Méso-
centre Clermont Auvergne University [84] and on the 
TGCC infrastructure of the CEA [85]. The construction 
of F. graminearum pangenome used in the mapping step 
is fully described in Rocher et al. [49].

From raw reads, TrimGalore v0.6.5 [86] was used 
to remove the adapters and low-quality bases (phred 
score < 20), while homemade Perl scripts were devel-
oped to trim the non-called bases and the polyA tails. 
Reads exhibiting a low complexity level (compression 
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size < 65%) and a short size (size < 60 nucleotides) were 
discarded using homemade Perl scripts. A decontami-
nation step was performed by mapping with STAR 
v2.7.1a [87] against a homemade database of potential 
contaminants composed of 1649 viral genomes, 9267 
bacterial genomes, and the human genome, down-
loaded from the NCBI Reference Sequence Database 
[88]. The trimming of ribosomal RNA reads was per-
formed with SortMeRNA v4.2.0 [89] against a data-
base of wheat and F. graminearum rRNAs built from 
noncoding RNA genes fasta files of the Triticum aesti-
vum v1.0 (GCA_900519105.1) assembly [90] and PH-1 
(GCA_900044135.1) genome assembly [91]. Genome 
and annotation files of Triticum aestivum [90, 92] and 
F. graminearum pangenome were merged into a host–
pathogen genome containing 269,428 (high-confidence 
and low-confidence genes) wheat genes and 17,647 F. 
graminearum genes. The mapping against this combined 
genome was performed using STAR v2.7.1a. Considering 
only the uniquely mapped read pairs, gene-level counts 
were generated for each species using the featureCounts 
software of the subread v2.0.1 package [93].

Statistical analysis of wheat expression data
Differential expression analyses
Statistical analysis was conducted on R v4.1.1 [94]. For 
the PathoV experiment, genes were filtered per treatment 
modality using a 4 counts per million (CPM) threshold in 
at least 3 samples independently of the time point. This 
resulted in an expression matrix of 49,505 genes. For each 
cultivar of the HostV experiment, genes were filtered per 
treatment modality with a 4 CPM threshold in at least 
3 samples independently of the time point. Expression 
matrices of “Arche,” “Courtot,” “Chinese Spring,” “Recital,” 
and “Renan” were composed of 45,181; 44,416; 46,306; 
46,120; and 45,252 genes respectively. For both experi-
ments, expression matrices were normalized according to 
library size with the trimmed mean of M values (TMM) 
method implemented in edgeR package [95, 96]. DE anal-
yses were performed using a negative binomial general-
ized linear model. DE analyses were conducted using the 
DiffAnalysis_EdgeR function of the DicoExpress script-
based tool [97], based on EdgeR package and generating 
all the contrasts automatically for complex experimental 
designs. For the PathoV experiment, the log2 of the mean 
normalized gene expression is an additive function of a 
treatment effect (4 modalities), a time effect (3 modali-
ties), and an interaction between the treatment and the 
time (12 modalities). A total of 48 contrasts were con-
sidered, which were defined for 12 of them as the differ-
ence between two time points given a treatment (kinetic 
effect), for 18 of them as the difference between two 
treatments given a time point (treatment effect) and for 

the last 18 as the interaction term, i.e., the difference 
between two time points given a treatment minus the dif-
ference between the same two time points given another 
treatment (interaction effect). For the HostV experiment, 
a model was designed for each cultivar where the log2 of 
the mean normalized gene expression is an additive func-
tion of a treatment effect (2 modalities), a time effect (3 
modalities), and an intersection between the treatment 
and the time (6 modalities). A total of 12 contrasts were 
considered for each cultivar. They were defined for six of 
them as the difference between two time points given a 
treatment (kinetic effect), for three of them as the differ-
ence between infected and mock samples given a time 
point (treatment effect), and for the last three as the 
difference between two time points in infected samples 
minus the difference between the same two time points 
in mock samples (interaction effect). A likelihood ratio 
test was performed on each contrast and the false dis-
covery rate was controlled with the Benjamini–Hoch-
berg adjustment procedure of the raw p-values [98]. An 
adjusted p-value threshold of 0.001 was set to declare a 
gene differentially expressed. The base 2 logarithm of fold 
changes (Log2FC) were visualized with spiderplots gener-
ated using the ggradar R package [99].

Expression pattern characterization
For the HostV experiment, filtered expression matrices 
from each cultivar have been merged into a single expres-
sion matrix. Prior to the analyses and for both experi-
ments, filtered raw count values were normalized using 
the regularized logarithm transformation (rlog) imple-
mented in the DESeq2 package [100]. For all the follow-
ing analyses, a z-score transformation was applied to the 
normalized count values. Gene expression patterns were 
described with heatmaps using the Pheatmap package 
[101]. The genes and samples were clustered using the 
ward.D2 agglomeration method applied on the Euclid-
ean distance matrices [102]. To assess the capacity of the 
selected genes to classify the infected samples from the 
PathoV experiment according to the strain × time point 
combinations, a PLS-DA was performed using the R 
package mixOmics [103] with 10 components and default 
parameters for the other options. To characterize the cul-
tivars responses to FHB, PCA analyses at each time point 
were computed using the FactoMineR R package [104]. 
The coordinates of the individuals on the two first PCA’s 
components were retrieved and were used to compute 
a complete linear model for each component, where the 
position on the component is an additive function of a 
cultivar effect (five modalities), a treatment effect (two 
modalities), and an interaction between the two factors 
(ten modalities). A p-value threshold of 0.05 was applied.
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Regulation networks computation
The TF regulation network of FHB responses and the 
effector regulation network were computed using the net-
work_inference function of the DIANE R package [105] 
based on the GENIE3 R package [106]. For both net-
works, the rlog normalized counts of the selected genes 
were used as input expression values. For the TF regula-
tion network of FHB responses, since regression meth-
ods are very sensitive to correlations between regulator 
genes, the regulator genes displaying a spearman corre-
lation above 95% in absolute value were grouped using 
the group_regressors function of DIANE package. For 
each group of highly correlated regulators, a new expres-
sion value is computed using only the average expression 
value of the positively correlated genes. For the effector 
regulation network, no grouping based on correlations 
was applied. For both networks, in order to infer connec-
tions between regulator and target genes, random for-
ests machine learning method was applied on the gene 
expression profiles to determine the influence of each 
regulator gene on each target gene. In the TF regulation 
network of FHB responses, the regulator genes were also 
part of the target gene set. For both networks, we applied 
the following procedure to select the most robust gene 
pairs without using a hard-threshold on edge weights. 
The edge’s importance matrix was computed using the 
“MSEincrease_oob” option as importance metric in the 
network_inference function. Then, to statistically test 
the significance of each edge, the test_edges function 
was applied on the inferred networks with the following 
settings: density = 0.02, nTrees = 1000, nShuffle = 1000. 
Edge importance p-values were adjusted according to the 
Benjamin-Hochberg procedure. The final networks were 
built from edges with an adjusted p-value below 0.02 
using the network_from_tests function. Network resume 
tables were created using the network_data function, 
which also performed the Louvain algorithm [107] that 
defines communities of nodes within the networks. Net-
work visualization was performed using the visNetwork 
R package [108].

Wheat gene ontology and annotations
Gene Ontology (GO) terms of Triticum aestivum v1.1 
genome annotation [92] were retrieved from Ensem-
blPlants using the BiomaRt R interface [109]. GO terms 
were then used to build a wheat annotation orgdb R 
package using the makeOrgPackage function of the 
AnnotationForge R package [110]. To predict transcrip-
tion factors, the iTAK software [111] was applied on the 
high (HC)- and low-confidence (LC) wheat proteomes 
v1.1. To use only the most robust TF genes in the subse-
quent analysis, we kept the intersection between the TF 

gene set predicted by iTAK and the high-confidence TF 
gene set identified in Ramirez et al. [112].

A database of susceptibility factors was built using 
known susceptibility genes of wheat listed in [31, 50] 
leading to a first database of 132 wheat susceptibility fac-
tors. To complete this database, the protein sequences of 
the susceptibility genes validated in other plant species, 
listed in [16], were retrieved from the UniProt Knowl-
edgebase [113], leading to a second database of 185 sus-
ceptibility factors. Their homologues in wheat HC and 
LC proteomes were searched using Blastp [114] with an 
identity threshold of 60%.

All enrichment analysis were performed using a hyper-
geometric test. Enrichment in TF genes and TF families 
in the “All strains”-responsive gene set were computed 
against the PathoV expressed TF gene set using the phy-
per function of the R stats package [115] with a p-value 
threshold of 0.05. Enrichment in TF genes within effec-
tor’s targets was performed against the TFs genes used 
in the input of the effector regulation network using the 
same method as for the TFs of the “All strains”-respon-
sive gene set. Functional enrichment analysis of the “All 
strains”-responsive gene set was conducted against the 
PathoV expressed genes, using the enrichGO function of 
the clusterProfiler v4.0 R package [116] on wheat’s Bio-
logical Process GO terms. Benjamin-Hochberg proce-
dure was used to adjust the p-values. An adjusted p-value 
threshold of 0.05 was set to declare over-represented a 
BP category.

Genomic localization of the putative susceptibility genes
In order to identify S genes that colocalize within loci 
associated with FHB resistance, genomic localizations of 
the identified S genes retrieved from the Gene Transfer 
Format (GTF) annotation file of wheat and the positions 
of the FHB resistance meta-QTLs in wheat, downloaded 
from the supplementary materials published in Zheng 
et al. [13], were plotted on wheat genome using the kary-
oplotR R package [117].

Score symptom monitoring experiment and analysis
To evaluate the susceptibility level of the wheat culti-
vars used in HostV, a complete factorial experiment was 
repeated in the same growth chamber than HostV and 
PathoV, from three additional biological replicates per 
cultivar. MDC_Fg1 spores were inoculated as for HostV 
and PathoV, at mid-anthesis with 10 μL of a solution at 
a concentration of  105 spores/mL in the floral cavity of 
the six central spikelets of three synchronous flowering 
spikes of each biological replicate. The symptoms were 
scored for each inoculated spikelet using a non-destruc-
tive 5-level rating scale, as described in Fabre et  al. [45, 
81]. The symptoms produced by MDC_Fg1 on the five 
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wheat cultivars were evaluated every 24 h from 48 to 168 
hpi. The statistical analysis was conducted on the score 
symptoms averaged per biological replicate. As described 
in Gilligan [118], the progress of symptom development 
was modelized using logistic regression curves using the 
following equation:

where x is the duration in hpi nested in the biologi-
cal replicates, Asym is the asymptote that modelized 
the maximum score symptom reached at the end of the 
experiment, xmid is the time required to reach 50% of 
the Asym score, and scal is the time required to switch 
from 50 to 75% of the Asym score. Modelization was 
performed using the nlsList function with the SSlogis 
setting from the nlme R package [119]. Asym, xmid, and 
scal parameters were retrieved for each plant and were 
analyzed with a one-way ANOVA to test the cultivar 
effect. To refine the susceptibility ranking of the 5 culti-
vars, a hierarchical ascendant clustering (HAC) was per-
formed with the complete linkage method applied on the 
Euclidean matrix computed from the scaled regression’s 
parameters.
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