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Abstract 

Background RNA-seq is a fundamental technique in genomics, yet reference bias, where transcripts derived 
from non-reference alleles are quantified less accurately, can undermine the accuracy of RNA-seq quantification 
and thus the conclusions made downstream. Reference bias in RNA-seq analysis has yet to be explored in complex 
polyploid genomes despite evidence that they are often a complex mosaic of wild relative introgressions, which intro-
duce blocks of highly divergent genes.

Results Here we use hexaploid wheat as a model complex polyploid, using both simulated and experimental data 
to show that RNA-seq alignment in wheat suffers from widespread reference bias which is largely driven by divergent 
introgressed genes. This leads to underestimation of gene expression and incorrect assessment of homoeologue 
expression balance. By incorporating gene models from ten wheat genome assemblies into a pantranscriptome 
reference, we present a novel method to reduce reference bias, which can be readily scaled to capture more variation 
as new genome and transcriptome data becomes available.

Conclusions This study shows that the presence of introgressions can lead to reference bias in wheat RNA-seq 
analysis. Caution should be exercised by researchers using non-sample reference genomes for RNA-seq alignment 
and novel methods, such as the one presented here, should be considered.
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Background
Quantification of gene expression using RNA-seq is a 
fundamental technique in genomics research. It has been 
employed in numerous publications across a range of 
biological systems to identify candidate genes underly-
ing traits of interest, uncover transcriptional pathways 
and networks, and investigate hypotheses relating to gene 

and transcriptional evolution and adaptation. In RNA-
seq experiments, mRNA, which represents a snapshot 
of the expression of each gene at the time of sampling, 
is extracted from the biological sample, converted to 
cDNA and sequenced. The number of resulting RNA-
seq reads deriving from each gene/transcript are quanti-
fied, with the number of reads proportional to the level 
of expression of that gene/transcript. Quantifying the 
expression level of each transcript and/or gene typically 
involves alignment of sequencing reads to the reference 
genome or transcriptome of the sequenced species using 
spliced alignment tools such as HISAT2 [1] and STAR 
[2] or pseudoalignment tools such as kallisto [3] and 
Salmon [4]. Despite these tools typically being devel-
oped and benchmarked with human data, they are widely 
used across numerous biological systems, often without 
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consideration for how they will behave with specific chal-
lenges the genomes of different species present.

Making meaningful inferences from RNA-seq data 
relies upon the accuracy of alignment and quantifica-
tion; downstream analyses and subsequent interpre-
tation assumes that the estimated gene expression 
reflects actual gene expression in the biological samples. 
However, nucleotide variation in the coding region of 
genes between the sequenced sample and the reference 
genome/transcriptome leads to errors in read assign-
ment during the alignment/pseudoalignment step. Some 
reads may be unassigned, while others may be assigned 
to the wrong locus. This source of error is widely known 
as reference bias as transcripts derived from alleles pre-
sent in the reference sequence will be quantified more 
accurately [5].

The reduction in accuracy caused by reference bias has 
the potential to negatively impact downstream analy-
ses and lead to incorrect findings. For example, Thor-
burn et al. [6] demonstrated how using a single reference 
genome to map sequencing data from genetically diverse 
individuals causes reference bias that negatively impacts 
downstream analyses in population genomic studies. 
While this study looked at mapping DNA reads, the same 
can be assumed to be true about RNA-seq data. Zhan, 
Griswold and Lukens [7] found that accurate estimates 
of transcript abundances from RNA-seq reads in maize 
are strongly affected by reference bias. By reanalysing 
RNA-seq data from a B73xMo17 recombinant inbred 
line population, they found that the detection of around 
50% of expression quantitative trait loci (eQTLs) alleles 
depended on which reference genomes was used: B73 or 
Mo17. As the previous study [8] used B73 as the refer-
ence, Zhan et al. [7] estimated that 50% of the detected 
eQTLs may be false positives. Munger et  al. [9] found 
that mapping RNA-seq reads to individualised genomes 
instead of a single reference genome substantially 
increased the accuracy of eQTL assignment in mouse 
from 88.2 to 98.3%, removing false positive results that 
appeared when using a single reference genome.

The impact of reference bias in RNA-seq analysis has 
not been assessed in complex polyploid genomes such as 
wheat despite these genomes having characteristics that 
may increase the extent and degree of reference bias rela-
tive to species with simpler genomes. Polyploidisation 
increases the number of alleles per gene, typically result-
ing in a pair of alleles, known as homoeologues, in each 
subgenome; however, subsequent gene duplications or 
deletions can change the relative copy number of homoe-
ologues between the subgenomes. As RNA-seq reads are 
derived from all subgenomes at once, read assignment 
must be able to distinguish reads deriving from homoeo-
logues. Accurate discrimination of wheat homoeologue 

RNA-seq reads has been demonstrated with both pseu-
doalignment [10, 11] (99.9% accuracy) and alignment-
based (98% accuracy) [11] methods when mapping reads 
back to the genome from which they derived. However, 
when mapping reads from a different genotype, unequal 
divergence between homoeologues relative to the ref-
erence genome may compromise the accuracy of the 
expression balance estimation between homoeologues. 
Being able to accurately estimate homoeologue expres-
sion balance is important for wheat research as variation 
in the relative mRNA expression of homoeologues within 
a triad may confer phenotypic plasticity [10] and varia-
tion in agronomic traits, the understanding of which has 
important applications for crop improvement.

Introgression events, the introduction of genetic mate-
rial from one species to another [12], are common among 
plants; in fact, its frequency is thought to be higher in 
plants than in animals, due to higher rates of interspecific 
hybridisation success [13]. Additionally, novel genetic 
variation is commonly introgressed into plants by breed-
ers and researchers for crop improvement [14]. Several 
studies have demonstrated how common introgressions 
are in wheat accessions with some accessions being com-
prised of up to 34% introgressed material [15–19]. The 
production of chromosome-level genome assemblies 
of modern elite wheat cultivars confirmed this, reveal-
ing introgressions from wild and domesticated relatives, 
including species outside of the Triticum and Aegilops 
genera, present in one or multiple cultivars [20, 21]. 
These introgressions introduce greater sequence diver-
gence between varieties than observed between varieties 
at non-introgressed regions; this increased divergence 
likely leads to an increased proportion of reads that are 
unable to be assigned correctly.

Using simulated and experimentally generated RNA-
seq data, we identify non-trivial levels of reference bias in 
RNA-seq mapping in wheat which can largely be attrib-
uted to introgressions. This leads to incorrect estimates 
of relative expression between homoeologues and incor-
rectly called differences in expression between cultivars. 
By constructing a pantranscriptome reference composed 
of Chinese Spring transcripts and transcripts from the 
assemblies generated as part of the 10+ wheat genomes 
project [20], we demonstrate how reference bias caused 
by divergent alleles can be reduced.

Results
Reference bias in wheat is driven by divergent genes 
introduced via introgressions and results in underestimation 
of gene expression
To explore the impact of reference bias on the quan-
tification of gene expression in wheat, we simulated 
1000 read pairs from each high-confidence (HC) gene 
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in Chinese Spring RefSeq v1.1 and the nine chromo-
some-level genome assemblies generated as part of the 
10+ wheat genomes project [20, 22] if the longest tran-
script of the gene is at least 500  bp. These reads were 
pseudoaligned or aligned to the Chinese Spring refer-
ence transcriptome or genome using kallisto or STAR, 
respectively. These algorithms represent pseudoalign-
ment and alignment-based methods and are among the 
most commonly used tools for RNA-seq quantification 
in the wheat community.

Mapping Chinese Spring reads to Chinese Spring, 
hereafter referred to as self-mapping, yields very accurate 
estimates of gene expression, with kallisto slightly out-
performing STAR (Fig. 1a, b, Additional file 1: Table S1). 
Using kallisto, 88,401/88,443 (99.95%) of genes were 
correctly quantified (between 500 and 1500 read pairs). 
Thirty-two genes were underestimated (< 500 read pairs) 
and 10 genes were overestimated (> 1500 read pairs). 
Using STAR, 87,689/88,443 (99.15%) were correctly 
quantified with 504 and 250 genes underestimated and 
overestimated, respectively.

Mapping reads generated from the other cultivars to 
Chinese Spring, hereafter called cross-mapping, yielded 
much less accurate estimation of gene expression with 
a skew towards underestimation (Fig.  1a, b, Additional 
file 1: Table S1). The percentage of genes correctly quanti-
fied ranged from 55,773/63,001 (88.53%) for Lancer, with 
5700 (9.05%) and 1528 (2.43%) under- and overestimated, 
respectively, to 58,468/64,077 (91.2%) for Norin61, with 
2527 (3.94%) and 3082 (4.81%) genes under and overes-
timated, respectively. For cross-mapping, unlike self-
mapping, STAR appears to perform better than kallisto; 
the proportion of correctly quantified genes ranged from 
58,390/63,001 (92.68%) for Lancer, with 3916 and 695 
under and overestimated, respectively, to 59,648/64,077 
(93.1%) for Norin61, with 2450 (3.82%) and 1979 (3.09%) 
genes under and overestimated, respectively.

To explore the effect of reference bias on the quantifi-
cation of homoeologue expression balance, we calculated 
the proportion of triads belonging to each category that 
defines a different state of relative homoeologue expres-
sion. As reads were simulated evenly across genes, all 

Fig. 1 Assessing the extent of reference bias in wheat. A Distribution of read counts when self-mapping Chinese Spring simulated reads 
or cross-mapping Landmark simulated reads. Comparing STAR and kallisto using the Chinese Spring RefSeq v1.0 reference and RefSeq v1.1 
transcriptome and kallisto using the pantranscriptome reference. B Percentage of genes with expression estimated correctly, expression 
underestimated (< 500 read pairs) and expression overestimated (> 1500 read pairs) for simulated reads from 10 cultivars aligned to Chinese Spring 
with kallisto and STAR or to the pantranscriptome reference with kallisto. C Balance of homoeologue expression across triads when self-mapping 
Chinese Spring or cross-mapping Landmark simulated reads, comparing STAR and kallisto using the Chinese Spring RefSeq v1.0 reference 
and RefSeq v1.1 transcriptome and kallisto using the pantranscriptome reference. Each point on the ternary plot represents one triad. Points 
towards a corner indicate dominant expression of that homoeologue, and points opposite a corner indicate suppression of that homoeologue. D 
Percentage of triads in each expression category, using simulated reads from 10 cultivars aligned to Chinese Spring with kallisto and STAR or to the 
pantranscriptome reference with kallisto
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triads should be classified as balanced; therefore, tri-
ads classified as imbalanced (one or two homoeologues 
with expression greater than the other(s)) are considered 
incorrectly classified. The percentage of correctly classi-
fied triads varies between 80.97% (Lancer) and 93.84% 
(Norin61) using kallisto and between 90.23% (Lancer) 
and 96.12% (Norin61) using STAR (Fig. 1c, d, Additional 
file  1: Table  S2). Across the cultivars, triads incorrectly 
classified as suppressed, where one homoeologue is esti-
mated to be expressed less than the others, were far more 
common than triads incorrectly classified as dominant, 
where one homoeologue is estimated to be expressed 
more highly than the others (Fig.  1d, Additional file  1: 
Table  S2). This reflects how the reference bias leads to 
more underestimated than overestimated genes.

The B subgenome has the most, and the D subgenome 
the fewest, number of triads incorrectly classified as sup-
pressed. This is in line with observations of greater diver-
sity in the A and B subgenomes, with the B subgenome 
having the highest [16]. This difference is largely caused 
by gene flow from wild tetraploid T. dicoccoides to T. aes-
tivum during the history of its cultivation, without com-
parable gene flow to the D subgenome [17, 19, 23]. This 
finding suggests the historic gene flow from tetraploid 
wheat likely contributes to reference bias in RNA-seq 
analyses.

To explore the extent of errors when comparing two 
cultivars mapped to a common reference, we com-
pared the estimated expression of Lancer and Jagger 
genes, whose simulated reads were both aligned to Chi-
nese Spring using STAR (Fig.  2a, b). Genes with read 
counts > 1.5 × or < 1/1.5 × compared to the other cultivar 
were classified as incorrectly quantified. Using STAR, 
4791/60,338 (7.94%) genes were incorrectly quanti-
fied between the two cultivars; of these genes, 2747 and 
2044 genes had a lower read count in Lancer and Jagger, 
respectively.

We observed a clear overlap between clusters of 
incorrectly quantified genes and regions of divergence 
between the cultivars (Fig.  2a, c), identified by blocks 
of reduced CDS nucleotide identity between pairs of 
orthologues between Lancer and Jagger. Such gene-level 
divergence is indicative of introgressed material; indeed, 
several of these blocks correspond to previously char-
acterised introgressions. These introgressions include 
(coordinates based on Chinese Spring RefSeq v1.0) the 
following: Aegilops ventricosa introgression in Jagger 
(chr2A:1–24,643,290) [20, 21, 24]; Triticum timopheevii 
introgression in Lancer (chr2B:89,506,326–756157100) 
[20, 21]; Aegilops comosa introgression in Jagger 
(chr2D:570,141,481–613325841) [21]; and a Thinopyrum 
ponticum introgression in Lancer (chr3D:591,971,000–
615552423) [20, 21]. 1881/3054 (61.59%) of introgressed 

genes (those belonging to one of the four previously 
characterised introgressions listed above) were incor-
rectly quantified between the two cultivars, compared 
to 2910/57,284 (5.08%) non-introgressed genes incor-
rectly quantified (Fig. 2d; chi-squared p-value < 2.2e − 16). 
Genes with an introgressed copy in Lancer tend to be 
underestimated in Lancer and genes with an introgressed 
copy in Jagger tend to be underestimated in Jagger.

In further support of CDS divergence being a predomi-
nant contributing factor to incorrect quantification, we 
found that incorrectly quantified genes have a mean CDS 
identity between orthologue pairs of 97.3% compared to 
a mean of 99.9% for genes correctly quantified (Fig.  2e; 
p-value < 2.2e − 16; 95% confidence interval ranges from 
2.45 to 2.63). The percentage of genes incorrectly quanti-
fied ranges from 83.2% for genes with < 96% CDS identity 
between orthologues to just 2.9% for genes with ≥ 99% 
identity between orthologues (Fig. 2f ).

Reducing reference bias by constructing 
a pantranscriptome reference
The 10+ wheat genomes project generated chromosome-
level de novo assembled genomes for nine wheat culti-
vars in addition to the reference cultivar Chinese Spring 
[20]. These include numerous introgressions that are the 
predominant source of reference bias we observe. High-
quality gene annotations for these genome assemblies 
have been produced [22]. We constructed a pantran-
scriptome reference by taking the transcripts from the 
107,891 Chinese Spring HC genes and adding transcripts 
from the nine cultivars with a chromosome-level genome 
assembly generated as part of the 10+ wheat genomes 
project [20] if that transcript’s gene exists in a 1-to-1 
relationship with a gene from Chinese Spring, based on 
OrthoFinder [25] orthogroup assignments. This resulted 
in a set of transcripts from 763,877 genes from 10 culti-
vars, 107,891 from Chinese Spring and a mean of 72,887 
from each of the nine other cultivars (Fig. 3). A total of 
80,211 Chinese Spring genes had at least one 1-to-1 
orthologue in another cultivar, while 59,639 Chinese 
Spring genes had a 1-to-1 orthologue in all nine other 
cultivars (Additional file  2: Fig. S1). The pantranscrip-
tome reference was used as the transcriptome reference 
for kallisto pseudoalignment. After pseudoalignment, 
read counts and TPMs were summed across all tran-
scripts corresponding to a given Chinese Spring gene. 
Kallisto splits read counts evenly across transcripts with 
an identical match so redundancy of transcripts does not 
cause problematic multi-mapping; all transcripts corre-
sponding to a gene can thus be added.

To ensure using this pantranscriptome reference does 
not introduce any additional mapping errors from add-
ing redundant transcripts, we compared quantified 
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Fig. 2 The impact of reference bias on expression differences between cultivars and enrichment of incorrectly quantified genes 
within introgressions. A The distribution of incorrectly quantified genes in 5-Mbp windows, coloured by the cultivar in which the estimated 
expression is lower; orange blocks are underestimated in Lancer compared to Jagger, while green blocks are underestimated in Jagger compared 
to Lancer. The reads are aligned using STAR as this outperformed kallisto for cross-mapping. B Expression counts for Lancer-Jagger orthologue 
pairs. Genes are considered incorrectly quantified if their estimated read count is 1.5 × or 1/1.5 × the other cultivar. C CDS nucleotide identity 
between Lancer and Jagger 1-to-1 orthologue pairs, binned into 5-Mbp genomic windows based on Chinese Spring RefSeq v1.0. D Percentage 
of genes incorrectly quantified and correctly quantified in characterised introgressed regions and regions not characterised as introgressed. E 
CDS nucleotide identity between Lancer and Jagger 1-to-1 orthologue pairs for those that are incorrectly quantified and those that are correctly 
quantified. F Percentage of genes incorrectly quantified and correctly quantified, split into bins of different levels of CDS nucleotide identity
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expression counts between four difference references: 
Chinese Spring, the pantranscriptome reference, Chi-
nese Spring plus the Landmark transcripts from genes 
in a 1-to-1 relationship with a Chinese Spring gene, and 
the pantranscriptome reference without the Landmark 
transcripts. The simulated reads from Landmark were 
used for pseudoalignment. Of these four references, the 
pantranscriptome reference performed the best, with 
97.53% of genes correctly quantified. Chinese Spring plus 
Landmark transcripts were very similar, with 97.50% of 
genes correctly quantified. This demonstrates that add-
ing redundant transcripts and summing the read counts 
does not introduce errors in the kallisto mapping. Using 
the pantranscriptome reference without Landmark tran-
scripts resulted in a slightly lower level of correct quanti-
fication, with 96.84% correctly quantified. The difference 
is likely due to uniquely introgressed genes in Landmark 
that are not present in the other cultivars. Nevertheless, 
due to many introgressed genes being common between 
cultivars, it still performed much better than just using 
Chinese Spring, which had 91.43% genes correctly 
quantified.

Using the pantranscriptome reference instead of 
Chinese Spring to quantify expression from the simu-
lated RNA-seq reads resulted in much more accurate 
quantification for genes that were previously underes-
timated when cross-mapping, removing nearly all gene 
counts below 1000 (Fig. 1a, b). There was little change 
in the number of genes overquantified when cross-
mapping and little difference in the distribution of read 
counts when self-mapping (Fig. 1a, b). The distribution 
of read counts shows that for Lancer, the most error-
prone cultivar, the number of genes correctly quanti-
fied increased from 58,390/63,001 (92.68%) using STAR 
to 61,352/63,001 (97.38%) using the pantranscriptome 
reference. Using the pantranscriptome reference, only 2 
genes remained quantified below 500 read pairs com-
pared to 3916 genes when using the Chinese Spring 
reference. The number of triads correctly assigned to 
the balanced expression category also greatly increased 
when using the pantranscriptome reference (Fig.  1d). 
All cross-mapped cultivars had at least 99.89% tri-
ads correctly assigned as balanced; this compares to 
between 80.97 and 93.84% using kallisto, and between 

Fig. 3 Creation of the pantranscriptome reference and how RNA-seq reads are aligned to it
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90.23 and 96.12% using STAR to align to Chinese 
Spring.

Comparing Jagger and Lancer as before, this approach 
reduced the number of genes incorrectly quantified in 
one cultivar from 4971/60,338 (7.94%) to 617 (1.02%) 
(Additional file  2: Fig. S2). Only 23 genes (0.0381%) 
remain incorrectly quantified due to underestimation 
in one cultivar. Almost all the remaining error in both 
cross-mapped read counts and incorrectly quantified 
genes between cultivars is due to overestimation of gene 
expression, likely caused by copy number variation or 
presence/absence variation between cultivars, as opposed 
to divergence between orthologous gene models.

Exploring reference bias caused by introgressions 
in experimentally generated RNA‑seq data
Simulated RNA-seq data is unlikely to capture the com-
plete picture of a real experiment [26]. While our simula-
tions highlight theoretical errors, it is important to assess 
how reference bias impacts published findings and how 
using the pantranscriptome reference corrects errors in 
real data. We reanalysed the sequencing data generated 
by He et  al. [11]. He et  al. [11] analysed RNA-seq data 
from 198 diverse wheat accessions, alongside enrich-
ment capture paired-end DNA reads, to uncover eQTLs 
linked with homoeologue expression bias and variation 
in important productivity traits. Crucially for our work, 
they identified a set of genes whose expression exhibited 
negative correlation with its homoeologue across the 
panel. A subset of accessions possessed lowly expressed 
alleles in one of the homoeologues and the presence of 
the lowly expressed alleles was linked to various impor-
tant productivity traits. This set contains 59 genes to 
which we have added ELF3-D1. While ELF3-D1 did not 
fall into the set of very negatively correlated 59 genes, it 

was used as case example due to its agronomic signifi-
cance. Also, it still did show a negative correlation with its 
B homoeologue, with this expression bias associated with 
agronomic traits. This set of 60 genes is hereafter referred 
to as genes showing lack of expression correlation.

Firstly, to identify potential introgressed regions within 
these accessions, we mapped the enrichment capture 
paired-end DNA reads to Chinese Spring RefSeq v1.0 
and for each 1-Mbp genomic window, calculated the 
mapping coverage deviation between each line and the 
median for that window across the accessions (Fig.  4a). 
Blocks of windows with coverage deviation values signifi-
cantly below 1 have few reads that have mapped in this 
region relative to the other accessions. This is indicative 
of an introgression (which introduces divergent DNA 
that maps less well) or a deletion. We observed more 
divergent material in the A and B subgenomes, which is 
expected based on the higher levels of gene flow to the A 
and B subgenomes (Fig. 4a) [17, 19, 23]. The genes show-
ing lack of expression correlation identified by He et  al. 
[11] are enriched in genomic windows identified as intro-
gressed or deleted (Fig. 4b), with 78.2% of these genes in 
a genomic window identified as introgressed or deleted 
in 30 or more accessions. In the rest of the genome, only 
12.3% of genes are found in a genomic window identified 
as introgressed or deleted in 30 or more accessions.

To explore the impact of the pantranscriptome refer-
ence on estimated expression, we pseudoaligned the leaf 
RNA-seq data from the 198 wheat accessions to both 
Chinese Spring and to the pantranscriptome reference. 
Kallisto was used for aligning to Chinese Spring instead 
of STAR for consistency with the analysis by He et  al. 
[11]. 43/60 (71.7%) of genes showing lack of expression 
correlation (Fig.  5a) have, in 25 or more accessions, an 
estimated expression less than half when mapping to 

Fig. 4 Enrichment of genes showing a lack of expression correlation in He et al. [11] within regions of divergence. A Chromosomal distribution 
of the number of accessions in each 1-Mbp genomic window which had mapping coverage deviation significantly less than 1 and are thus likely 
to contain divergent introgressed material or be deleted. B The number of genes from the set of 60 genes showing lack of expression correlation 
identified by He et al. [11] that are present in genomic windows identified as introgressed or deleted in 30 or more accessions
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Chinese Spring compared to when mapping to the pan-
transcriptome reference. These are likely introgressed 
genes whose expression is underestimated when using 
Chinese Spring as the reference. 6/60 (10.0%) of the genes 
have, in 25 or more accessions, an estimated expres-
sion more than double when mapping to Chinese Spring 
compared to when mapping to the pantranscriptome 
reference (Fig. 5a). This may arise if, when using the Chi-
nese Spring reference, RNA-seq reads were incorrectly 
assigned to a gene because the correct gene is too diver-
gent and then, when using the pantranscriptome refer-
ence, those incorrectly assigned reads now have another 
more appropriate gene to be assigned to, resulting in 
fewer reads assigned to the first gene.

While this shows that using Chinese Spring as the ref-
erence leads to underestimation of many of these genes, 
it is important to look at the impact of this on the calcu-
lated correlation between homoeologues that led to them 
being classified as genes of interest by He et al. [11]. We 
found that the SCC score between homoeologues from 
this set was − 0.0990 when using the Chinese Spring 
reference and 0.407 using the pantranscriptome refer-
ence (Fig. 5b; p-value < 2.2e − 16; 95% confidence interval 
ranges from − 0.603 to − 0.410). Even though this SCC 
value remains lower than the mean SCC (~ 0.8) reported 
for the entire set of homoeologues [11], it indicates that 
the usage of pantranscriptome as reference increases 
expression correlation estimates between homoeologues 
compared to single reference estimates.

Several regions with poor mapping coverage (map-
ping coverage deviation significantly below 1) in multiple 
accessions overlap precisely with previously identified 
introgressions from cultivars assembled in the 10+ wheat 
genomes project [20]. One such introgression is at the 
end of chr1D (484,302,410–495,453,186  bp, based on 
RefSeq v1.0 coordinates), present unbroken in 53/198 
(26.8%) accessions (Additional file 1: Table S3) and shared 
with cultivars Jagger and Cadenza (Fig.  6a). The precise 

overlap of the blocks of the reduced mapping coverage in 
the accessions and in Jagger and Cadenza suggests that 
this introgression has the same origin in all these lines, 
and that no recombination has taken place within the 
introgression since its introduction. This lack of varia-
tion in its size makes it a good candidate for the follow-
ing analysis. Additionally, this region was highlighted by 
He et al. [11] as it contains 6 of the genes showing lack 
of expression correlation, including ELF3-D1, which was 
used as a case example due to its role in heading date [27]. 
He et al. [11] suggest this is a terminal deletion; however, 
Wittern et  al. [28] identified that the terminal region, 
including ELF3-D1, is an introgression in Cadenza and 
Jagger, deriving from either Triticum timopheevii or 
Aegilops speltoides, based on the ELF3-D1 gene model 
possessing an intronic deletion shared with both of these 
species. We can exclude Ae. speltoides as the donor spe-
cies as protein alignments between the Jagger introgres-
sion and Ae. speltoides proteins showed a median protein 
identity of just 91.6%. As T. timopheevii does not have a 
genome assembly available, we cannot confirm it is the 
donor; however, the mapping profile of T. timopheevii 
reads to the Jagger genome assembly suggest it is a likely 
match (Additional file 2: Fig. S3). As we cannot be certain 
about the donor species, we will hereafter refer to this 
introgression as the chr1D introgression.

We compared the mean expression of genes from the 
chr1D introgression across accessions that possess the 
introgression to their 1-to-1 wheat orthologue across 
the accessions lacking the introgression. When using 
the Chinese Spring reference, the introgressed genes 
appear to be less expressed than their wheat ortho-
logues (p-value = 0.0224, 95% confidence interval ranges 
from − 8.65 to − 0.679); however, when using the pantran-
scriptome reference, no significant difference in expres-
sion was found between the genes (Fig.  6b, Additional 
file 1: Table S4; p-value = 0.980, 95% confidence interval 
ranges from − 4.94 to 4.82).

Fig. 5 The impact of reference bias on the quantification of gene expression in the accessions sequenced by He et al. [11]. A Estimated 
expression of the 60 genes identified as showing a lack of expression correlation by He et al. [11], using either the Chinese Spring RefSeq 
v1.1 transcriptome or the pantranscriptome reference as targets for kallisto pseudoalignment. The dashed black line represents x = y, which 
is the expected value if the reference is not affecting the estimation of gene expression. An accession lying on this dashed line has this gene’s 
expression estimated the same when using each reference. Red dots and green dots represent accessions in which a given gene has a TPM 
value < 50 or > 150%, respectively, when mapping to Chinese Spring than when mapping to the pantranscriptome reference. A red star indicates 
that in 25 or more accessions, the gene has an estimated expression less than half when mapping to Chinese Spring compared to when mapping 
to the pantranscriptome reference. A green star indicates that in 25 or more accessions, the gene has an estimated expression more than double 
when mapping to Chinese Spring compared to when mapping to the pantranscriptome reference. B Spearman’s correlation coefficient (SCC) 
between homoeologue pairs where one homoeologue is in the set of genes showing a lack of expression correlation identified by He et al. [11]. 
SCC scores were computed between AB, AD and BD homoeologue pairs and the lowest score was used. Triads in which any of the homoeologues 
were not present in the RefSeq v1.0 HC gene annotation were excluded. The significance of the difference between SCC scores when using 
the Chinese Spring reference compared to when using the pantranscriptome reference was calculated using a two-tailed t-test with no assumption 
of equal variance

(See figure on next page.)
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Earlier, using simulated data, we demonstrated 
that reference bias can lead to incorrect assignment 
of expression balance across triads. To examine this 
phenomenon in real data, we examined the estimated 

expression across triads within the chr1D introgression 
that are also in the set of genes showing lack of expres-
sion correlation identified by He et  al. [11]. When the 
RNA-seq reads are pseudoaligned to Chinese Spring, 

Fig. 5 (See legend on previous page.)
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in lines with the chr1D introgression, ELF3-D1 appears 
to be lowly expressed and the expression of ELF3-B1 
appears slightly elevated compared to accessions with-
out the chr1D introgression. However, when mapped 
to the pantranscriptome reference, the expression of 
ELF3-D1 and ELF3-B1 in accessions with the chr1D 
introgression appears very similar to that in accessions 
without the chr1D introgression (Fig.  7a, b). The CDS 
sequence for ELF3-D1 from the introgression shares 
97.0% sequence identity with ELF3-D1 in Chinese 
Spring, 97.6% identity with ELF3-A1 and 97.8% identity 
with ELF3-B1. The high divergence of ELF3-D1 from 
the introgression and ELF3-D1 from Chinese Spring 
and the greater similarity between ELF3-D1 from 
the introgression with ELF3-B1 from Chinese Spring 
explains how most reads were unable to be assigned, 

yet some were incorrectly assigned to the ELF3-B1, 
hence the slight increase in estimated expression of 
ELF3-B1 when using the Chinese Spring reference. The 
five other genes showing lack of expression correlation 
within the chr1D introgression also showed reduced 
homoeologue imbalance using the pantranscriptome 
reference and expression level in line with accessions 
without the chr1D introgression, in which the triad 
does not contain an introgressed D homoeologue. Four 
of these genes also showed a slight decrease in esti-
mated expression in the B homoeologue when mapping 
to the pantranscriptome reference, supporting the idea 
that false mapping from the introgressed gene to its 
homoeologue will be driving false negative correlation 
scores in addition to artificially low expression of the 
introgressed homoeologue.

Fig. 6 Introgressed genes falsely identified as being less expressed due to reference bias. A Mapping coverage deviation of DNA reads across chr1D 
of Jagger, Cadenza, and 5 of the accessions analysed by He et al. [11]. Each point is the coverage deviation value for a given 1-Mbp genomic 
window. Windows with a normalised coverage score significantly different to the median normalised coverage score for that window across the set 
of lines being compared are coloured red. Coverage deviation values significantly below one indicates divergent material is present or a deletion 
has taken place, relative to the median of the rest of the set of lines. Coverage deviation values and significance values were calculated separately 
for the accessions and for the cultivars Jagger and Cadenza, the latter two being compared to mapping coverage values from the other cultivars 
whose genomes were assembled as part of the 10+ wheat genomes project [20]. The reduced coverage at the end of chr1D, the left-hand border 
of which is indicated by the vertical dashed black line, is the chr1D introgression, common to 53 of the 198 accessions and Jagger and Cadenza 
which were assembled as part of the 10+ wheat genomes project. B Expression of the wheat gene compared to its introgressed orthologue 
from the chr1D introgression, using either Chinese Spring or the pantranscriptome reference as targets for kallisto pseudoalignment. Orthologue 
pairs with TPM < 1 in both the introgressed and the wheat copy when mapping to the pantranscriptome reference were excluded. The significance 
of the difference between introgressed and non-introgressed orthologues when using the Chinese Spring or the pantranscriptome reference 
was calculated using two-tailed t tests with no assumption of equal variance
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Discussion
In the emerging era of plant pangenomics, chromosome-
level assemblies are being generated for an increasing 
number of cultivars/accessions, which will facilitate a 
shift away from reference genome-centric methods. Here 
we have demonstrated the importance of utilising these 
resources effectively for RNA-seq analyses in wheat to 
reduce reference bias.

RNA‑seq reference bias in wheat
Quantification of gene expression from RNA-seq reads 
in wheat is very accurate when the matching reference 
genome for the sample is available. However, cross-
mapping RNA-seq reads leads to detectable levels of 
reference bias, seen both at the individual gene level and 
also when assigning triads to categories of homoeologue 
expression balance. A major cause of this bias appears 
to be introgressions of diverged gene orthologues from 
wheat’s wild and domesticated relatives. In some cases, 
references bias within introgressions could be severe 
enough to have a strong impact on downstream analy-
ses and conclusion drawn based on these analyses. This 

analysis was conducted on wheat but other species 
with substantial introgressed content and/or polyploid 
genomes may suffer from the same problem. Similar 
analyses on other species may thus provide value for their 
respective communities.

Kallisto performed better for self-mapping but when 
cross-mapping, STAR was better able to deal with diver-
gence between genes, although was far from resolving the 
issue of reference bias. Similar limitations of alignment-
free methods have been previously discussed; for exam-
ple, Wu et  al. [29] demonstrated that kallisto performs 
poorly for lowly expressed genes and for RNA reads with 
biological variation compared to the reference.

A future exploration of the impact of reference bias on 
differential expression calls in wheat will be useful. Ref-
erence bias may have little impact on differential expres-
sion between conditions or across tissues within a single 
genotype, as, even if incorrectly quantified, the ratio of 
estimated expression between conditions/tissues should 
remain very similar regardless of reference. However, this 
needs to be assessed formally. If interested in homoeo-
logue expression balance, however, unequal divergence of 

Fig. 7 The impact of reference bias on the quantification of triads in which one homoeologue has been introgressed. A Estimated expression 
level of introgressed D homoeologues compared to the wheat B homoeologues and wheat D homoeologues compared to wheat B 
homoeologues, using either Chinese Spring or pantranscriptome reference as targets for kallisto pseudoalignment. Each point represents one 
accession. B Expression level of triads from where the D homoeologue is an introgressed gene in a subset of lines, using either Chinese Spring 
or the pantranscriptome reference as targets for kallisto pseudoalignment. The centre line of the boxplots = the median; the box limits = the upper 
and lower quartiles, the whiskers = 1.5 × interquartile range; and the points = outliers
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homoeologues relative to the reference will lead to incor-
rect findings. Reference bias also makes complex patterns 
more difficult to discern. For example, in a previous study 
[30], we demonstrated how the rhythmicity of ELF3-1D 
and SIG3-1D in a Cadenza timecourse RNA-seq data-
set was difficult to ascertain as the reads mapped so 
poorly to Chinese Spring. However, when using adding 
in the introgression to the reference, the reads mapped 
more correctly, and the rhythmicity could be accurately 
assessed.

Matching a sample to a more appropriate reference 
genome will become increasingly possible as genome 
assemblies for more wheat accessions become avail-
able. However, analyses involving two or more accessions 
require a common reference genome to which the RNA-
seq reads can be aligned. In this situation, or when the 
appropriate genome assembly is not available for within-
accession analyses, it is important to exercise caution 
and check whether introgressed genes might be impact-
ing conclusions drawn. In the long term, it is important 
to work towards overcoming this issue of introgression-
induced reference bias by implementing novel methods.

Using a pantranscriptome reference to reduce reference 
bias
Previous work has shown the benefit of using enhanced 
references or individualised references as targets for 
RNA-seq mapping. Vijaya Satya, Savaljevski and Reif-
man [31] constructed an enhanced reference genome for 
human by including alternative allele segments at known 
polymorphic loci. Other publications have reported 
mapping to individualised genomes/transcriptomes by 
updating the reference with SNPs, INDELs and/or splice 
sites for each individual [9, 32]. By using individualised 
genomes instead of a single reference genome, Munger 
et  al. [9] increased the accuracy of eQTL detection in 
a multi-parent mouse population from 88.2 to 98.3%. 
Kaminow et al. [33] constructed a pan-human consensus 
genome by calculating the consensus allele for each vari-
ant; this significantly improved the accuracy of RNA-seq 
mapping when compared to the reference genome. Simi-
lar approaches have been used for reducing reference 
bias when mapping DNA reads [34, 35].

Our approach follows in this vein. However, indi-
vidualised genomes or consensus genomes are not suit-
able for wheat as the degree of divergence introduced 
by introgressions prohibits the accurate genotyping 
necessary for creating said genomes. Instead, we built 
a pantranscriptome reference that includes transcripts 
from other wheat cultivars in the Chinese Spring refer-
ence transcriptome. The low resource requirements of 
kallisto regardless of reference size enables a highly scal-
able approach as more genome and transcriptome data 

are generated, while still running in a fraction of the time 
that alignment-based tools take to align to one reference 
genome.

The pantranscriptome reference corrects almost all 
expression values underestimated for genes belonging 
to an introgression present in the assembled pangenome 
cultivars and in a 1-to-1 relationship with a Chinese 
Spring gene. However, this approach does currently have 
limitations. The pantranscriptome reference will not cur-
rently contain all introgressions present across wheat 
accessions. The pantranscriptome reference is not rep-
resentative of wheat germplasm around the world; for 
example, it lacks, with the exception of Chinese Spring, 
transcripts from Asian and African wheat cultivars. 
There are several such genomes whose transcripts could 
be incorporated into the pantranscriptome [36–39]. 
However, we opted to include only those genomes anno-
tated using the same methodology to ensure accurate 
orthologue assignment.

As more genomes and/or transcriptomes are 
sequenced and other existing genomes are re-annotated 
to provide consistent gene annotations, transcripts can 
be added to the pantranscriptome reference to broaden 
the scope of genetic variation covered. This may lead to 
a saturation point at which most of the commonly seg-
regating variation is captured within the reference and 
it can be considered complete for most use cases. This 
approach also only addresses errors caused by diver-
gent genes and not those caused by copy number varia-
tion such as tandem duplications, and presence/absence 
variation caused by a cultivar having a gene deletion or 
a novel gene. This is because, to ensure additional errors 
were not introduced, we elected to only add transcripts 
from other cultivars to the pantranscriptome reference if 
they came from genes in a 1-to-1 orthologous relation-
ship with a Chinese Spring gene. Developing a way to 
overcome this limitation is important but also challeng-
ing because it requires resolving complex orthologue and 
paralogue relationships, and it is unclear how novel genes 
and genes with varying copy number between cultivars 
should be represented in the pantranscriptome reference.

Different solutions entirely to the problem of RNA-seq 
reference bias in wheat may emerge as being superior. For 
example, the field of graph genomes is developing rapidly 
[40, 41], including methods to align RNA-seq reads to a 
graph genome [42]. However, graphs for genomes as large 
and as complex as wheat are yet to be created success-
fully. It is also a much heavier-weight solution compared 
to the pantranscriptome pseudoalignment approach. At 
the very least, our approach provides a temporary way 
to improve the accuracy of RNA-seq alignment, par-
ticularly for those genes comprising the core genome. 
With further development and the incorporation of new 
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data, it may evolve into an alternative, more lightweight 
approach to emerging graph-based methods.

Examining reference bias in experimentally generated 
RNA‑seq data
Using the valuable dataset generated by He et al. [11], we 
were able to show that reference bias is present in experi-
mentally generated datasets as well as simulated datasets. 
The diverse nature of the wheat accessions sequenced 
may have made this work particularly prone to the effects 
of reference bias; after all, we demonstrated that diver-
gent regions are abundant across the accessions. How-
ever, the ubiquity of introgressions is not exclusive to this 
set of accessions as introgressions are common across 
most wheat germplasm, including Elite cultivars. Indeed, 
wheat accessions containing diverse introgressions are 
very important in wheat research as it may be the source 
of beneficial variation for breeders, not to mention 
sources of insight into the evolution of wheat genomes.

The homoeologous sets of genes showing lack of 
expression correlation identified by He et  al. [11] were 
enriched in genomic regions identified as introgressed 
or deleted in many of the accessions with 78.2% fall-
ing in such regions. We also showed that most of these 
genes had much higher expression when using the pan-
transcriptome reference instead of the Chinese Spring 
reference. Using the pantranscriptome reference also 
increased the SCC scores calculated between homoeo-
logue pairs. These findings may alter the interpretation 
of why these genes are associated with productivity traits. 
While some of these triads may still exhibit genuine dys-
regulation of homoeologues and homoeologue dosage 
effects, it is likely that, for at least some of these genes, 
variation in the gene sequence itself is underlying this 
trait variation, rather than alteration of expression dosage 
between homoeologues. This also has implications for 
the evolutionary and selection mechanisms implicated in 
the control of these traits.

To more precisely examine how the quantification of 
introgressed genes changes with the reference used, we 
focused on genes in the chr1D introgression due to its 
presence in around a quarter of the accessions and con-
stant size across accessions possessing it. We showed that 
when using Chinese Spring as the reference, it appears 
as though introgressed genes are less expressed than the 
wheat orthologues they replaced. However, when using 
the pantranscriptome reference, which contains the 
introgressed gene models as the cultivar Jagger also con-
tains this introgression, there is no significant difference 
between the expression of these genes. Correcting the 
quantification of these genes also altered the estimated 
expression balance across triads in which the D homoeo-
logue is introgressed by raising the estimated expression 

of the D homoeologue. It would not have been surpris-
ing to see, even after removing reference bias, that intro-
gressed genes were expressed differently than the wheat 
orthologue they replace, perhaps due to the divergence 
in regulatory sequences. However, this finding suggests 
that, at least for this introgression, that is not the case. 
This has implications for any RNA-seq studies using 
wheat accessions containing introgressions, and also 
more specifically for studies looking at the expression of 
introgressed genes and what mechanisms underlie the 
phenotype they confer.

Conclusions
Our results highlight the problem of reference bias in 
wheat RNA-seq alignment which, when relying on a sin-
gle reference genome, lead to inaccurate gene expression 
quantification and incorrect assignment of homoeologue 
expression balance. This effect was shown using both 
simulated and experimentally generated data. As diver-
gent introgressed genes play a major role in this reference 
bias, incorporating divergent gene models from different 
wheat cultivars into the transcriptome reference reduced 
the extent of reference bias and provides a novel method 
which can be further developed as high-quality genome 
assemblies become available for more cultivars.

Methods
Read simulation, alignment and quantification
Reads were simulated from the longest transcript from 
each HC gene in Chinese Spring RefSeq v1.0 [43] (with 
RefSeq v1.1 annotation) and the nine pseudomolecule 
genome assemblies [22] if the transcript ≥ 500 bp. Wgsim 
from samtools v1.9 [44] was used to simulate 1000 pairs 
of 150 bp reads per gene with an insert size of 400 bp and 
no errors.

The kallisto index was produced from the CDS 
sequences from the RefSeq v1.1 high-confidence gene 
annotations using kallisto v0.44.0 [3]. Reads were pseu-
doaligned to this index using 100 bootstraps and default 
settings. Read counts and TPM values were summed 
across transcripts to generate gene level counts and TPM 
values.

To construct the pantranscriptome reference, we 
first ran Orthofinder [25] with standard parameters to 
define orthogroups based on the longest isoform pro-
tein sequences of the HC genes from Chinese Spring and 
the nine cultivars for which chromosome-level genome 
assemblies were generated as part of the 10+ genome 
project [20]. If a gene was found in a 1-to-1 relationship 
with a Chinese Spring gene, its transcripts were added to 
the Chinese Spring RefSeq v1.1 HC transcript fasta file. 
A kallisto index was built and reads pseudoaligned as 
above. Read counts and TPMs were each summed across 
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all transcripts of a gene and its 1-to-1 orthologues using 
the custom python script sum_orthologue_transcript_
counts.py [53] to generate gene-level counts.

The STAR index was built for RefSeq v1.0 with the 
RefSeq v1.1 HC gene annotation using STAR v2.7.6a [2] 
using default parameters except for –limitGenomeGen-
erateRAM 200000000000 and –genomeSAindexN-
bases 12. The simulated reads from the 10 cultivars 
were aligned to this index using STAR and the predicted 
splice junctions from all were merged and then filtered 
to remove non-canonical junctions, junctions supported 
by 2 or fewer uniquely mapping reads and reads already 
annotated in the original genome annotation. The index 
was rebuilt using these discovered splice sites in addi-
tion to the annotated splice sites. The simulated reads 
from the 10 cultivars were aligned to this new index with 
parameters –quantMode TranscriptomeSAM and –out-
SAMunmapped Within. Gene-level read counts were 
generated using RSEM v1.2.28 [45].

For read count comparisons between self-mapping 
and cross-mapping, the following criteria were used to 
determine whether a gene was present in the analysis. For 
self-mapping, all genes from which reads were simulated 
were used. For cross-mapping, genes from which reads 
were simulated in that cultivar and that are in a 1-to-1 
relationship with a gene in Chinese Spring from which 
reads were also simulated were used.

Defining triad balance
Triads in Chinese Spring were taken from Ramírez-
González et  al. [10]. For each cultivar, triads were 
retained if all three homoeologues were used to simulate 
RNA-seq reads. Triad balance was computed in the same 
way as [10] except for the use of read counts rather than 
TPMs due to the way we simulated the reads. The rela-
tive read count of each homoeologue within a triad was 
calculated as follows:

where A, B and D are the read counts of the A, B and 
D homoeologues, respectively. Euclidean distance was 
then used to calculate the distance between each set of 
normalised expression values across a triad to an ideal 

Anorm =
A

A+ B+ D

Bnorm =
B

A+ B+ D

Dnorm =
D

A+ B+ D

normalised read count bias for each of seven categories 
(Table 1). A triad is assigned to an expression bias cate-
gory by selecting the category with the shortest Euclidean 
distance between the observed and the ideal bias.

Calculating CDS identity
Blastn from blast + v2.7.1 [46] was used to align the 
nucleotide sequence of the longest transcripts of pairs 
of orthologues between Chinese Spring RefSeq v1.1 and 
Lancer. The identity of the best hit between pairs was 
taken and binned into 5-Mbp genomic windows.

Binning incorrectly quantified genes
The RefSeq v1.0 genome [43] was split into 5-Mbp 
genomic windows using bedtools makewindows [47] and 
for each window, a score was calculated based on the 
number of under (read count < 500) and overestimated 
(read count > 1500) genes within that window:

Processing sequencing data generated by He et al. [11]
One hundred ninety-eight accessions had both leaf RNA-
seq data and enrichment capture short paired-end DNA 
reads. The RNA-seq data from the 198 lines was pseu-
doaligned to both Chinese Spring RefSeq v1.1 and the 
pantranscriptome reference as above for the simulated 
reads. TPMs were summed across transcripts to generate 
gene level counts. Accessions GF25, GF270, GF32, GF37, 
GF41 and GF73 were excluded for RNA-seq analyses as 
in [11].

DNA reads were mapped to Chinese Spring RefSeq 
v1.0 [43]. The alignment was filtered using samtools [44]: 
supplementary alignments, improperly paired reads, and 
non-uniquely mapped reads (mapping quality less than 
10) were removed. PCR duplicates were detected and 
removed using the Picard Tools v2.1.1 MarkDuplicates 

−1 ∗ no.of underestimated genes + (1 ∗ no.overestimated genes)

Table 1 Ideal normalised read count bias for each triad 
expression category

Category A B D

Balanced 0.33 0.33 0.33

A suppressed 0 0.5 0.5

B suppressed 0.5 0 0.5

D suppressed 0.5 0.5 0

A dominant 1 0 0

B dominant 0 1 0

D dominant 0 0 1
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function [48]. Accessions GF294, GF342, GF366, GF380, 
GF381, GF383 and GF38 were excluded for DNA analy-
ses as in [11].

Using mapping coverage deviation to identify divergent 
regions of the genome
To generate DNA sequencing reads for the cultivars 
assembled as part of the 10+ wheat genomes project, 
we simulated paired-end 150-bp reads with 500-bp 
insert and no errors from all fourteen Triticum aestivum 
genome assemblies (ArinaLrFor, Cadenza, Claire, Jagger, 
Julius, Lancer, Landmark, Mace, Norin61, Paragon, Robi-
gus, Stanley, SY Mattis and Weebil) [20] to a depth of 
10x using WGSim within samtools v1.9 [44]. Reads were 
mapped to RefSeq v1.0 as above.

The RefSeq v1.0 genome [43] was split into 1-Mbp 
genomic windows using bedtools makewindows [47]. 
Using the filtered read mappings for the cultivars from 
the 10+ wheat genomes [20] project and for the acces-
sions analysed by He et  al. [11], the number of reads 
mapping to each window was computed using hts-nim-
tools [49]. To normalise by the sequencing depth of each 
line, read counts were divided by the number of mapped 
reads that passed the filters, producing normalised read 
counts. Different windows of the genome have variable 
mapping coverage rates, so to compute coverage devia-
tion we must compare each window to the same window 
in the other lines in the collection. Median normalised 
read counts, m, were produced, containing the median 
for each genomic window. Mapping coverage deviation 
was then defined for each line as:

for window i ∈ {1, 2, …, n}, where ε is the median d value 
across the genome for the line. Statistically significant d 
values were calculated using the scores function from the 
R package ‘outliers’ using median absolute deviation and 
probability of 0.99. Mapping coverage deviation and sig-
nificance values were computed separately for the culti-
vars from the 10+ wheat genomes project [20] and for the 
accessions analysed by He et al. [11].

Locating coordinates of introgression boundaries
To detect the precise locations of the chr1D, chr2A Ae. 
ventricosa, and the chr2D Ae. markgrafii introgres-
sions in Jagger, and the chr2B T. timopheevii and the 
chr3D Th. ponticum introgression in Lancer, I used the 
alignments for the simulated Jagger and Lancer reads 
generated above. Read depths were binned into 5- and 
1-Mbp windows using bedtools makewindows [47] and 

di =
Ci

mi · ε

hts-nim-tools [49]. The window in which read depth 
drops, signifying the start/end of the introgression, was 
identified for each introgression and IGV was used to 
precisely identify the position where the coverage pro-
file changes. To locate the location of the introgressions 
relative to the Jagger/Lancer genomes in order to iden-
tify which genes have been introgressed, I extracted Chi-
nese Spring sequence 1Mbp either side of the precisely 
located border position (or until the end of the chromo-
some) for each introgression and aligned them to the 
Jagger or Lancer genome assembly using minimap2 [50] 
with parameters -x asm5. These alignments were used to 
determine the borders of the introgressed region as they 
appear in their donor genomes.

Characterising the chr1D introgression donor species
Blastp from blast + v2.7.1 [46] was used to align the Ae. 
speltoides proteins with the longest isoforms of the 
Jagger HC proteins. The best hit for each Jagger pro-
tein was kept. Paired-end Illumina DNA reads from T. 
timopheevii [51] were mapped to Chinese Spring RefSeq 
v1.0 [43] using BWA mem v0.7.13 [52]. Samtools v1.4 
[44] was used to filter the alignments to retain mapped 
reads, primary alignments, properly paired reads and 
uniquely mapping reads (mapping quality greater than 
10). PCR duplicates were found and removed using the 
Picard Tools v2.1.1 MarkDuplicates function [48]. Read 
depths were binned into 5-Mbp windows using bedtools 
makewindows [47] and hts-nim-tools [49] and divided by 
window length to account for windows at ends of chro-
mosomes which are less than 5Mbp in length.

Calculating SCC between homoeologues
SCC scores were calculated between AB, AD and BD 
homoeologue pairs for triads where one homoeologue 
was in the set of genes showing lack of expression cor-
relation identified by He et al. [11]. This was done using 
the cor.test function in R with the ‘Spearman’ method 
and the lowest SCC value of the three comparisons was 
taken. Triads were excluded if any of the homoeologues 
were not found in the HC RefSeq v1.1 annotation.

Statistical tests
The significance of the difference in the proportion of 
genes that were correctly quantified between intro-
gressed and non-introgressed regions was calculated 
using a chi-squared test with a sample size of 60,338. 
The significance of the difference between mean CDS 
nucleotide identity between orthologue pairs when 
correctly quantified compared to incorrectly quanti-
fied was calculated using two-tailed t tests with no 
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assumption of equal variance and a sample size of 
60,338. The significance of the difference in Spearman 
correlation scores between homoeologue pairs when 
using the Chinese Spring reference compared to the 
pantranscriptome reference was calculated using a two-
tailed t test with no assumption of equal variance and a 
sample of 55. The significance of the difference between 
introgressed and non-introgressed orthologues when 
using the Chinese Spring or the pantranscriptome ref-
erence was calculated using two-tailed t tests with no 
assumption of equal variance with a sample size of 63.

Abbreviations
eQTL  Expression quantitative trait locus
HC  High confidence
SCC  Spearman’s correlation coefficient
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