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Abstract
Background: Runx transcription factors are important regulators of metazoan development. The
sea urchin Runx gene SpRunt was previously identified as a trans-activator of the CyIIIa actin gene,
a differentiation marker of larval aboral ectoderm. Here we extend the functional analysis of
SpRunt, using morpholino antisense oligonucleotides (morpholinos) to interfere with SpRunt
expression in the embryo.

Results: The developmental effects of four different SpRunt-specific morpholinos were evaluated.
The two morpholinos most effective at knocking down SpRunt produce an identical mitotic
catastrophe phenotype at late cleavage stage that is an artifact of coincidental mis-targeting to
histone mRNA, providing a cautionary example of the insufficiency of two different morpholinos
as a control for specificity. The other two morpholinos produce gastrula stage proliferation and
differentiation defects that are rescued by exogenous SpRunt mRNA. The expression of 22 genes
involved in cell proliferation and differentiation was analyzed in the latter embryos by quantitative
polymerase chain reaction. Knockdown of SpRunt was found to perturb the expression of
differentiation markers in all of the major tissue territories as well as the expression of cell cycle
control genes, including cyclin B and cyclin D.

Conclusions: SpRunt is essential for embryonic development, and is required globally to
coordinate cell proliferation and differentiation.

Background
The Runt domain (Runx) is a highly conserved, 128
amino acid sequence that defines a small family of het-
erodimeric transcription factors that are key regulators of
animal development (reviewed in [1]). Most develop-
mental studies of Runx gene function have been carried
out in Drosophila and in mice, each of which has multiple
Runx genes. The genome of Drosophila melanogaster con-
tains four Runx genes, including the well-studied genes

runt and lozenge, as well as two genes (genomic loci
CG1379 and CG15455) that have not been well-charac-
terized [2]. Runt is a primary pair rule gene involved in
segmentation, sex determination and neurogenesis,
whereas lozenge is a key regulator of patterning in the eye
(reviewed in [3]). Mammalian genomes contain three
Runx genes, each of which is essential for development of
a major organ system: Runx1 is required for hematopoie-
sis, Runx2 is required for osteogenesis, and Runx3 is
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required both for proprioceptive neurogenesis in the dor-
sal root ganglia and for normal stomach development
(reviewed in [1]). All three mammalian Runx genes are
associated with cancer, and RUNX1 is a frequently
mutated gene in acute leukemia [4]. The multiplicity of
Runx genes in insects and vertebrates reflects independent
duplication events within the arthropod and chordate lin-
eages, and the primitive condition within bilaterians
appears to be possession of a single Runx gene [2].

The sea urchin Strongylocentrotus purpuratus has a single
Runx gene, SpRunt [5,6]. SpRunt was discovered biochem-
ically through its specific regulatory interaction with the
CyIIIa actin gene [7,8]. The Runx target sequence in the
CyIIIa cis-regulatory domain is required for transcriptional
activation, particularly after gastrulation when high levels
of CyIIIa expression accompany terminal differentiation
of the aboral ectoderm [8]. However, in the gastrula-stage
embryo the highest levels of SpRunt mRNA are found not
in aboral ectoderm, but rather in oral ectoderm and
endomesoderm, a spatial pattern that is essentially iso-
morphic with that of continued growth and cell prolifera-
tion [5]. SpRunt mRNA is absent in unfertilized eggs, and
accumulates zygotically to an initial steady-state level of
~700 molecules per embryo by morula stage, after which
it accumulates further to a 10-fold higher level between
mid-blastula and early gastrula stage [8]. In adults, SpRunt
expression has been shown to be an early response of the
immune system to bacterial challenge [9].

The current study was undertaken to further define the
role of SpRunt in sea urchin embryogenesis.

Results and discussion
Morpholino antisense targeting of SpRunt
Morpholino antisense oligonucleotides can be used to
sequence-specifically block translation [10] or pre-mRNA
splicing [11]. We employed both strategies to study
SpRunt function, using morpholinos that target sequences
within exon 1 (m1, m2, and m3) and the first two exon-
intron junctions (m4 and m5; Figure 1A). To test the effi-
cacy of the translation-blocking morpholinos, zygotes
were injected with m1, m2, or m3 or a non-specific con-
trol morpholino (mC), together with synthetic SpRunt
mRNA (>100-fold excess over endogenous levels), and
the resulting embryos analyzed by immunoblot using an
antibody generated against the N-terminal peptide of
SpRunt. Zygotic translation of full-length SpRunt protein
from exogenous mRNA is completely blocked by m1 and
partially blocked by m2, but not at all by m3, which tar-
gets a potential secondary translational start site (Figure
1B). To test the efficacy of the splice-blocking mor-
pholinos, we performed RT-PCR on total RNA isolated
from embryos injected with m4, m5, or mC. While both
m4 and m5 interfere with production of full-length

SpRunt mRNA, m4 is somewhat more effective than m5
(Figure 1C). In addition, m5 induces production of a tran-
script that retains intron 2 (which encodes a truncated
protein with a complete Runt domain, and hence a poten-
tially functional protein), and also skipping of exon 2,
producing an aberrant transcript that fuses exon 3 directly
to exon 1 (data not shown).

Morpholinos 1 and 4 produce a cleavage stage artifact by 
mis-targeting to histone mRNA
Embryos injected with anti-SpRunt morpholinos develop
two distinctive phenotypes: an early blastula stage arrest
(Figure 2) and a later gastrula-stage arrest (Figure 3; see
below). We initially interpreted this as reflecting complete
versus partial loss of SpRunt function, since the more
severe early phenotype is obtained with the two mor-
pholinos that are most effective at knocking down SpRunt
(that is, m1 and m4; see Figure 1). By late cleavage-stage,
all of the nuclei in m1- or m4-injected embryos are abnor-
mal (Figure 2B,2C; compare to control in Figure 2A), with
a 'cut'-like phenotype indicative of a failure to segregate
mitotic chromosomes (Figure 2C, arrow). Counts of
nuclei and time-lapse imaging show that these embryos
undergo a global mitotic catastrophe during cleavage
cycle 7 or 8 (data not shown). For both m1 and m4, this
phenotype is obtained in >95% of embryos injected with
morpholino doses of ~1–2 µM, comparable to effective
dosage in other studies [10,12].

At the time of arrest, m1-injected embryos contain sub-
stantially fewer histones per unit DNA than do control
embryos (Figure 2D), a defect that is known to cause
mitotic catastrophe in other systems [13-15]. To deter-
mine if the histone deficit is caused by a failure of histone
synthesis, we analyzed metabolically-labeled protein
from morpholino-injected embryos. Surprisingly, m1-
injected embryos are specifically deficient in synthesis of
histone H3 (Figure 2E, lane 2), whereas m4-injected
embryos are deficient in synthesis of histone H4 (Figure
2E, lane 3). This led us to suspect that the cell division
phenotype of m1- and m4-injected embryos might be
caused by antisense mis-targeting to mRNA encoding H3
and H4, respectively. In fact, significant similarity (18/25)
is found between the m1 target sequence and two non-
contiguous blocks of sequence near the start codon of H3
(Figure 2F), and a similar situation (20/25) obtains for the
target sequence of m4 and H4 (Figure 2G). The gaps and
mismatches would suggest that mis-targeting of the mor-
pholinos to the histone mRNA should not occur; how-
ever, S. purpuratus embryos develop at 15°C, which would
reduce the stringency for hybridization. In addition, the
relatively high concentration of histone mRNA would
tend to drive the imperfect hybridization with the
morpholinos.
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When m1 is co-injected with synthetic H3 mRNA (0.1
mg/ml), translation of the exogenous histone mRNA is
indeed blocked (Figure 2H; compare lanes 2 and 3). How-
ever, co-injection of sufficiently high levels of H3 mRNA
(≥1 mg/ml) rescues m1-injected embryos from mitotic
catastrophe (Figure 2I), whereas similar levels of H3
mRNA do not rescue m4-injected embryos (not shown).
Co-injection of SpRunt mRNA lacking the m1 target
sequence does not rescue either m1- or m4- injected
embryos (not shown). We conclude that m1-injected
embryos undergo mitotic catastrophe because of anti-
sense mis-targeting to histone H3 mRNA, whereas the
mitotic catastrophe in m4-injected embryos is probably
caused by mis-targeting to histone H4 mRNA. These
results show that production of similar defects by two dif-
ferent morpholinos that target the same gene does not
prove that the defects are caused by knockdown of the
intended target.

Morpholinos 2 and 5 cause gastrula stage developmental 
defects
Embryos injected with m2 or m5 appear relatively normal
through mesenchyme blastula stage (not shown), but
thereafter develop numerous obvious defects. By late gas-
trula stage, the embryos are smaller than controls, and dis-
play differentiation and/or patterning defects in all of the
major tissue territories: the ectoderm is radialized, the pri-
mary mesenchyme cells fail to undergo skeletogenesis,

and the gut rudiment is short, disorganized, and typically
evaginates as an exogastrula (Figure 3C,3D; compare to
controls in Figure 3A,3B). Pigment cells do eventually
develop however, indicating that some differentiation
occurs.

Although m2- and m5-injected embryos develop indistin-
guishable defects, the coincidental mis-targeting artifact
obtained with m1 and m4 compelled us to use a rescue
approach to prove that these defects are caused by loss of
SpRunt function. Since m5 is a splice-blocking mor-
pholino that targets the second exon-intron junction, it
would not be expected to block SpRunt translation, and
we reasoned that it should therefore be possible to sup-
press the defects observed in m5-injected embryos by co-
injection of wild-type SpRunt mRNA. This is indeed the
case (Figure 3E,3F): in three separate experiments with
injection solutions containing 1 mg/ml SpRunt mRNA
(~6 kb), 30–50% of embryos had the rescue phenotype
depicted in Figure 3, while the remainder of the embryos
were somewhat more normal looking than those injected
with morpholino alone (for example, with longer exogas-
trulated guts). The incomplete penetrance of the rescue is
probably due to turnover of the injected mRNA by gas-
trula stage. In contrast, only 10–15% of embryos injected
with m5 alone display a normal phenotype (probably as
a result of under-injection).

Morpholino antisense targeting of SpRuntFigure 1
Morpholino antisense targeting of SpRunt. (A) Schematic of SpRunt, showing the relative locations of sequences targeted by 
each of the five morpholinos used in this study. Exons 1–3 are depicted as boxes, with coding regions shaded. The Runt domain 
is black. Horizontal arrows indicate the positions of primers used for the RT-PCR shown in (C). (B) Immunoblots of protein 
translated in vivo from injected SpRunt mRNA co-injected with control morpholino (mC), m1, m2, or m3. As a loading control, 
the same blots were probed with an antibody to the sea urchin stem-loop binding protein (SLBP). (C) RT-PCR of SpRunt from 
total RNA extracted from early blastula stage embryos injected with mC, m4 or m5 (two separate experiments). RT-PCR of 
ubiquitin was used to control for RNA levels.
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Embryos injected with anti-SpRunt m1 and m4 undergo a mitotic catastrophe caused by antisense mis-targeting to histone mRNAFigure 2
Embryos injected with anti-SpRunt m1 and m4 undergo a mitotic catastrophe caused by antisense mis-targeting to histone 
mRNA. (A-C) Confocal images of fixed 15 hr embryos stained with DAPI (blue) and rhodamine phalloidin (red). (A) Control 
(mC)-injected embryo, (B) m1-injected embryo, and (C) m4-injected embryo. The arrow indicates a pair of 'cut' cells. Bar = 10 
µm. (D) SDS PAGE of whole nuclei containing equivalent amounts of DNA (0.5 µg) from 14-hour control (mC) and m1-
injected samples, stained with SYPRO Ruby protein stain. The positions of core histones, obtained from the mobility of calf 
thymus histone standards run on the same gel, are shown on the left of the gel, while the positions of molecular weight stand-
ards are indicated on the right. (E) Total protein from 600 mC-, m1-, or m4-injected embryos labeled metabolically with 35S-
Met/Cys from 4 to 8 hours post-fertilization (hpf). Histones are easily identified by their characteristic size and stoichiometry, 
and by the fact that at this stage they represent ~5–10% of the total protein synthesized in the embryo [27]. The positions of 
histones H3 and H4 are indicated. (F, G) Sequence alignment between (F) the target sequence for m1 and α-histone H3 
mRNA, and (G) the target sequence for m4 and α-histone H4 mRNA. Sequence identities are highlighted in black. The start 
codons are underlined in each sequence. (H) In vivo translation of synthetic histone H3 mRNA co-injected with m1. The 
injected zygotes were labeled metabolically with 35S-Met/Cys for 2 hours, during the first cleavage cycle. (I) 15-hr blastula stage 
embryo, stained as in A-C, showing rescue of m1-induced cell division defects by co-injection of 1 µg/µl H3 mRNA; bar = 10 
µm.
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Phenotype of late gastrula stage embryos injected with anti-SpRunt m2 and m5Figure 3
Phenotype of late gastrula stage embryos injected with anti-SpRunt m2 and m5. DIC images (A-F) and cytometric analysis (G-I) 
of 48 hour embryos. (A) Control morpholino (mC)-injected embryo, cross section, with the oral side to the left and the gut 
indicated by an arrowhead. Bar = 20 µm. (B) mC-injected embryo, oral view, with the skeletal spicules indicated by an arrow 
(sp). (C) m2-injected embryo. (D) m5-injected embryo. (E-F) Embryos co-injected with m5 and SpRunt FL mRNA, showing 
the rescued development of gut (E) and spicule rudiments (F). (G) DNA histogram of mC-injected embryos. (H) DNA histo-
gram of m5-injected embryos; note the accumulation of cells in G2/M. (I) DNA histogram of embryos co-injected with m5 and 
SpRunt mRNA. Note the reduced accumulation of cells in G2/M compared to the embryos injected with m5 alone.
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The small size of SpRunt-depleted embryos suggests that
they might be defective in growth and/or cell
proliferation. Consistent with such a possibility, embryos
injected with m5 were found to contain about half the
DNA content of control embryos by 48 hours post-fertili-
zation (late gastrula stage; data not shown). We used
cytometry to further examine the DNA content in these
embryos. Compared to controls of the same age (Figure
3G), m5-injected embryos at 48 hours post-fertilization
display an abnormally high proportion of cells in G2/M
phase (Figure 3H), a defect that is rescued by co-injection
of SpRunt mRNA (Figure 3I), indicating that SpRunt is
required for the normal developmental program of cell
division. This is consistent with the expression pattern of
SpRunt, which is isomorphic with the pattern of cell pro-
liferation in the embryo [5].

Quantitative RT-PCR (Q-PCR) was used to examine the
effect of SpRunt knockdown on gene expression (Table 1).
The data in Table 1 indicate that SpRunt is required for the
expression of differentiation genes in each of the four
major territories of the embryo (that is, oral ectoderm,
aboral ectoderm, vegetal plate endomesoderm, and skele-
togenic mesoderm). One of the genes whose activity is
most dramatically affected by depletion of SpRunt is

SpDri, which encodes a transcription factor that is impor-
tant for gastrula stage differentiation of oral ectoderm
[16]. Expression of SpGsc, another transcription factor
important for oral ectoderm differentiation [17], is also
diminished (Table 1). This may be a secondary effect, as
SpGsc is likely to be a target of SpDri [16]. SpRunt is also
required for normal expression levels of terminal differen-
tiation markers such as CyIIIa in aboral ectoderm, Endo16
in endoderm, and SM50 in skeletogenic mesoderm (Table
1). It is possible that the skeletogenic defects are a non-
autonomous consequence of the failure to differentiate
ectoderm [18], although the fact that SpRunt is expressed
at relatively high levels in skeletogenic mesenchyme [5] is
consistent with an autonomous requirement. Moreover, a
sequence that contains the Runx binding consensus (TGT/

CGGTT/C) is found upstream of the promoter of the SM50
gene (A.J.R., unpublished observation).

In support of a role in cell proliferation, SpRunt is
required for normal levels of cyclins B and D, which are
expressed in a proliferation-specific pattern similar to that
displayed by SpRunt [19,20]. In addition, SpRunt posi-
tively regulates the expression of protein kinase C (PKC;
Table 1). Interestingly, human PKCβ has been shown to
be a direct target of RUNX1 [21]. Given the wide variety of

Table 1: Q-PCR analysis of gene expression in SpRunt morphant embryos

Function Gene 24 hpf 48 hpf

Transcription factor Runt NS NS/NS/NS
Myb -3.9/NS/NS NS/NS/NS
Dri (OE) -2.3/NS/-2.5 -12/-8.9/-6.9/-2.6/-7.6/-3
Hnf6 (OE) NS/NS -2.5/NS/-3.1/-2.5
Gsc (OE) -2.4/NS/NS -3.7/-2.3/-2.4/-4.7/-5.1
Otxα (VPEM early) NS/NS +5.2/+4.8/+10.5/+10.2
Otxβ1 (OE) -2.4/-1.9 NS/NS/NS/NS
Otxβ3 (VPEM+OE) -2.4/-2.4 NS/+3.5/NS/NS/NS

Cell cycle control CyclinD NS/NS/NS -2.9/-2.7/-4.8/-2
CyclinE NS/-2 NS/-2.6/NS/NS
CyclinA NS NS/+3.6/+5.8/+3/+2
CyclinB -2.4/-2.5/-2.2 -3.7/NS/NS
Wee1 NS/NS -2.5/NS/NS/NS
Cdk4 NS NS/NS/NS

Signal transduction PKC NS/-2/-3 -8.8/-8/-7.7/-4.9/-5.4
AE differentiation CyIIIa* -2.7/-1.9/-2 -2.4/-2.3/-3.8/-3

Spec2a -2.1/-2.3/-2.3/-3.4 NS/NS/NS/-3.9
ARS -3.9/-2.4 NS/NS/NS/NS

VPEM differentiation Endo16 -6.8/-3.4 -1.8/-2.4/NS/NS/NS
SM differentiation SM50 -2.4/-2.3/-2.6 -9.6/-3/-4.3/NS/NS/NS

SM30 NS/NS -4.1/NS/NS/NS
Msp130 -5.7/NS NS/-2.7/NS/NS

*CyIIIa was identified previously by cis-regulatory analysis as a direct target of SpRunt [8]. Each number indicates fold-difference in transcript levels 
in SpRunt-m5-injected embryos compared to controls (triplicate average for a single experiment), measured as described in Methods. Based on the 
results obtained with CyIIIa, fold-differences of less than a factor of 2 (~1 cycle) were scored as not significant (NS). hpf, hours post-fertilization; AE, 
aboral ectoderm; OE, oral ectoderm; VPEM, vegetal plate endomesoderm (gut and secondary mesoderm); SM, skeletogenic mesoderm.
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developmental signaling processes that utilize protein
kinase C, it is possible that a significant number of the
later defects in SpRunt morphant embryos develop as a
consequence of loss of PKC expression.

Although loss of SpRunt function appears to have global
effects on development, the expression of a number of
genes is not affected, which argues against a non-specific
effect on gene expression caused by a general arrest of
development. Moreover, loss of SpRunt function has
stage-specific effects on the expression of each of genes
listed in Table 1, in some cases early, and in others late.
The expression of some genes (for example, Spec2a, ARS,
Otxβ3, and Endo16) is affected more strongly at mesen-
chyme blastula stage than at late gastrula stage, and the
opposite is true for several other genes (for example,
SpDri, cyclinD, and Otxα). A few genes are affected at both
stages assayed (for example, CyIIIa, PKC, and SM50). In
most cases, knockdown of SpRunt causes a diminishment
in gene expression levels, consistent with its previously
identified function as an activator of CyIIIa [8]. However,
in the cases of Otxα and cyclinA there is an elevation in
expression at 48 hours. Normally Otxα levels are greatly
diminished at this stage of development [22], and it is
possible that this involves SpRunt mediated repression.

The stage-specific effects of SpRunt knockdown on gene
expression are consistent with the proposition that
SpRunt functions within the context of one or more cis-
regulatory modules in each target gene, thereby regulating
a temporal and/or spatial sub-element of the target gene's
overall expression pattern, as is the case with CyIIIa [8,23].
While further work using chromatin immunoprecipita-
tion and cis-regulatory analysis will be necessary to deter-
mine which of the affected genes in Table 1 are direct
targets of SpRunt, these data demonstrate that SpRunt is
required globally for both cell proliferation and differen-
tiation, and is likely to be a key node in the gene regula-
tory network that coordinates these processes during
embryogenesis. Understanding of how this is accom-
plished will require a comprehensive analysis of the rele-
vant gene regulatory network, and this is in progress.

Conclusions
In both Drosophila and in mice, Runx proteins are
expressed in localized domains and are important for the
development of specific structures, and are thus often
referred to as cell lineage or tissue-specific transcription
factors. Unlike sea urchins, both insects and vertebrates
have multiple Runx genes [2], which may reflect the
greater regulatory network complexity in these organisms
(that is, the Runx paralogs may reflect a requirement for
expression variants as opposed to functionally distinct
proteins). Our results suggest that SpRunt is required for
normal development in all of the embryonic tissues. This

would not have been predicted based on its spatial pattern
of expression, which in the post-gastrula stage embryo is
confined to actively dividing cells [5]. Nonetheless,
SpRunt clearly functions autonomously to promote the
gastrula stage differentiation of aboral ectoderm [8],
wherein its mRNA (but not protein; J.A.C., unpublished)
is virtually undetectable [5]. Rather than specifying cell
fate per se, SpRunt is probably required as a 'promoter
organizer' [24] for the normal functioning of a variety of
different territory-specific transcription factors. It is possi-
ble that Runx genes are generally required for coordinat-
ing cell proliferation and differentiation during animal
development, a requirement that would be masked by the
idiosyncrasies of their mRNA expression patterns as well
as by functional redundancies between paralogs in model
systems that contain multiple Runx genes.

Methods
Animals, embryo culture, and microinjection
Strongylocentrotus purpuratus were obtained from Marinus,
Inc. (Long Beach, CA, USA), Charles Hallohan (Santa Bar-
bara, CA, USA), or Pat Leahy (Corona del Mar, CA, USA).
Gamete collection, fertilization, embryo culture, and
microinjection were carried out as previously described
[8]. For metabolic labeling, embryos were incubated in 14
µCi 35S-Met/Cys (>1000 Ci/mmole; APBiotech, Piscata-
way, NJ, USA) in a total of 1 ml artificial seawater (ASW)
at 15°C.

Morpholino antisense oligonucleotides
The following morpholinos were purchased from Gene-
Tools, LLC (Philomath, OR, USA): ACGCGAGTGGTTTG-
TATCGAGATGA (m1);
GATGAAAGGGCGGGAAAAAATGATT (m2); TAACTGT-
TATGTAGGTTGTTCCTCC (m3); ATTTTCCAACTTAC-
CTCGACCCGAT (m4); and
GGTATGACTTACGTCTGGGTTCTC (m5).

Target site selection and design of each morpholino was
performed by GeneTools. The standard control mor-
pholino (mC) from GeneTools was used as a non-specific
control. Prior to injection, morpholinos were diluted to
150–400 µM in 120 mM KCl.

Synthetic mRNA
For immunoblot analyses of morpholino-injected
embryos, DNA sequence encoding SpRunt [8] was ampli-
fied by PCR using the primers: GGGGTACCCCGCCACTT-
GTCCACATGTATACT (forward) and
GCTCTAGAATATGGCCGCCAGACGTCCTCTT (reverse).
The amplified fragment was digested with Kpn1 and Xba1
and cloned into pBluescript (Stratagene, La Jolla, CA,
USA) between the T7 promoter and the pre-inserted
Xba1/Sac1 fragment of pXFRM [25] containing the Xeno-
pus β-globin gene 3' UTR and polyadenylation site. The
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resulting plasmid, pRFLβ, was verified by sequence analy-
sis and linearized with Sac1 for mRNA synthesis. For
rescue experiments, the 3' UTR of SpRunt (including the
poly A signal and tail) was amplified from cDNA using the
primers CAGATCGCTACCTACAACCGTGCAA (forward)
and TTTTTTTTTTCAAAGTGAACAGAGTGTTTTA (reverse)
and cloned into pGEM-T Easy (Promega, Madison, WI,
USA). This plasmid was digested with AatII to release the
insert, which was then cloned into the AatII sites of the
original SpRunt clone [8] to generate a plasmid contain-
ing the full-length sequence of the SpRunt mRNA. Follow-
ing verification by sequencing, this plasmid was used as a
PCR template to amplify full-length SpRunt, using the T7
primer and the reverse primer representing the SpRunt
poly A tail (see above), and the resulting amplicon was
then used for mRNA synthesis. Capped synthetic mRNA
was made with the T7 mMessage Machine from Ambion
(Austin, TX, USA).

Microscopy and cytometry
Staged embryos were fixed in 4% formaldehyde in filtered
ASW for 20 min to 6 hrs on ice, then washed 3× with PBS
and into PBS plus 0.2% Tween-20 (PBST). To detect
nuclei and cell boundaries, embryos were stained for 5–
10 mins with rhodamine phalloidin (Molecular Probes,
Eugene, OR, USA) at 1:40 and DAPI (Molecular Probes) at
300 nM in PBST, and washed 3× in PBS. Digital images
were collected using either a Zeiss Axioplan or a Leica TCS
SP2 confocal microscope.

For DNA analysis, embryos grown at 15°C were collected
by centrifugation, washed once 1 M Glycine, 2 mM EDTA,
pH 8, and then resuspended in calcium-free seawater. The
embryos were dissociated into single cells by mild tritura-
tion, and stained with propidium iodide (PI) using the PI
Stain kit from Sigma (St. Louis, MO, USA). PI fluorescent
signal (580/30 nm) was measured using a Cyan flow
cytometer (Dako-Cytomation, Fort Collins, CO, USA).
Approximately 10,000 events were collected per sample.
DNA ploidy analysis was performed using ModFit LT soft-
ware (Verity Software House, Topsham, ME, USA).

Isolation of nuclei and DNA fluorometry
Embryos were lysed by incubation for 15 minutes on ice
in ~5 volumes of hypotonic lysis buffer (10 mM HEPES,
pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM DTT) supple-
mented with a general protease inhibitor cocktail
(Sigma), followed by addition of Igepal CA-630 (Sigma)
to a final concentration of 0.6% and vortexing for 10 sec-
onds. Nuclei were then isolated by centrifugation for 30
seconds at 10,000 g. The nuclear pellet was resuspended
in ~5 volumes Buffer D (25 mM Hepes pH 7.5, 5 mM
MgCl2, 0.1 mM EDTA, 1 mM DTT, 1 mM Spermidine, 0.1
mM PMSF), and the DNA content was quantitated by

fluorometry using Hoechst 33258 (Sigma) and the Hoefer
DyNA Quant 200 system (APBiotech).

SDS polyacrylamide electrophoresis (PAGE) and 
immunoblots
Protein samples (representing equivalent total protein, as
determined by the method of Bradford [26]), whole
nuclei (representing equivalent total DNA, as determined
by fluorometry), or whole 35S-labeled embryos (equiva-
lent numbers, as determined by manual counts) were
mixed with an equal volume of 2× SDS sample buffer,
heated to 95°C for 5 min, and run on a 10% NuPAGE Bis-
Tris gel (Invitrogen, Carlsbad, CA, USA). Gels were dried
and imaged, stained with SYPRO Ruby (Bio-Rad, Her-
cules, CA, USA) and imaged directly, or transferred to a
nitrocellulose membrane. Radioactive and fluorescent
gels were imaged on a Typhoon 8600 phosphorimager
(APBiotech). For immunoblots, the membrane was incu-
bated for 1 hr in TBS-T (20 mM Tris-HCl, pH 7.5, 150 mM
NaCl, 0.05% Tween-20) with 5% nonfat milk (TBS-TM),
and then incubated in TBS-TM containing an appropriate
dilution of primary antibody overnight at 4°C. Following
four washes for 5 min each with TBS-T, the membrane was
incubated for 1 hr at room temperature in TBS-TM con-
taining 2 ng/ml of goat anti-rabbit IgG HRP conjugate
(Biosource International, Camarillo, CA, USA). The mem-
brane was then washed 5× for 5 min each in TBS-T, incu-
bated for 4 min in Super Signal West Femto substrate
(Pierce Biotech, Rockford, IL), and exposed to Kodak X-
OMAT film.

The SpRunt antibody was raised against the N-terminal
peptide of SpRunt, and affinity purified on a column bear-
ing the peptide antigen.

Reverse transcription and quantitative polymerase chain 
reaction
Total RNA was isolated from morpholino injected
embryos using the RNeasy mini kit (Qiagen, Valencia, CA,
USA), and quantified with the RiboGreen Quantification
Kit (Molecular Probes). Quantitative, real-time, one-step
RT-PCR was performed using the Qiagen QuantiTect
SYBR Green RT-PCR kit and the fluorescence measured in
a BioRad iCycler. Starting with 50 ng of total RNA and 0.4
µM of each primer the reaction was set up and run follow-
ing the Qiagen recommended protocol. For quantitative
real-time PCR (Q-PCR) measurements, determination of
the ratio of target in the control versus the sample was cal-
culated as 1.9∆Ct, where ∆Ct represents the ubiquitin-nor-
malized difference in the number of cycles needed to
obtain the threshold fluorescence intensity (Ct) in control
morpholino injected versus SpRunt-morpholino injected
samples for each primer pair [16]. Initial PCR reactions
were also performed using Qiagen OneStep RT-PCR kit
and visualized by ethidium bromide in agarose gels to
Page 8 of 9
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ensure that there was only a single product formed under
the conditions used for each primer pair. Primer
sequences used for the RT-PCR and Q-PCR reactions are
listed in the Supplemental Table [see Additional file 1].
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