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Abstract

Background: Polyploidy has played a prominent role in shaping the genomic architecture of the
angiosperms. Through allopolyploidization, several modern Gossypium (cotton) species contain two
divergent, although largely redundant genomes. Owing to this redundancy, these genomes can play
host to an array of evolutionary processes that act on duplicate genes.

Results: We compared homoeolog (genes duplicated by polyploidy) contributions to the
transcriptome of a natural allopolyploid and a synthetic interspecific F; hybrid, both derived from a
merger between diploid species from the Gossypium A-genome and D-genome groups. Relative
levels of A- and D-genome contributions to the petal transcriptome were determined for 1,383
gene pairs. This comparison permitted partitioning of homoeolog expression biases into those
arising from genomic merger and those resulting from polyploidy. Within allopolyploid Gossypium,
approximately 24% of the genes with biased (unequal contributions from the two homoeologous
copies) expression patterns are inferred to have arisen as a consequence of genomic merger,
indicating that a substantial fraction of homoeolog expression biases occur instantaneously with
hybridization. The remaining 76% of biased homoeologs reflect long-term evolutionary forces, such
as duplicate gene neofunctionalization and subfunctionalization. Finally, we observed a greater
number of genes biased toward the paternal D-genome and that expression biases have tended to
increases during allopolyploid evolution.

Conclusion: Our results indicate that allopolyploidization entails significant homoeolog
expression modulation, both immediately as a consequence of genomic merger, and secondarily as
a result of long-term evolutionary transformations in duplicate gene expression.

Background

A hallmark of angiosperm genome organization is gene
redundancy. Redundant genome segments have been
identified in the composition and architecture of modern-
day angiosperm genomes suggesting one or more ancient
genome duplication events [1-3]. This has led to consider-
able interest in the evolution of the resulting duplicated

genes. A key issue has been the identification of factors
that enhance the retention of duplicate gene pairs and
their potential for adaptive diversification or subfunction-
alization (the partitioning of ancestral function). Mecha-
nisms such as the maintenance of gene dosage and
epistatic interactions [4,5] and epigenetically regulated
expression subfunctionalization [6,7] have been impli-
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cated in aiding duplicate gene retention. These processes
describe mechanisms of retention for ancient duplicate
genes and naturally lead to questions about the evolution-
ary behavior of duplicate gene pairs in more recently
formed polyploid species.

Members of the cotton genus provide a phylogenetic
framework to study the evolution of duplicate gene
expression in recent polyploids because five diverse allo-
polyploid species are thought to have diverged from a sin-
gle allopolyploidization event [8], and models of the
ancestral diploid progenitor species (denoted by A, and
D;) have been identified (Figure 1A). In addition, exten-
sive genomic resources, such as comprehensive expressed
sequence tag (EST) libraries [9], microarray platforms
[10,11], and BAC libraries [12] have greatly extended
research capabilities. Synthesis of an F, hybrid, combining

A. B.

http://www.biomedcentral.com/1741-7007/6/16

the A- and D-genome diploid model species, offers the
opportunity to untangle the effects of genomic merger
from those arising from genome doubling and subse-
quent evolutionary change. This phylogenetic framework
facilitates the study of gene expression from co-resident
genomes on two temporal scales, from the onset of
hybridization to a longer-term evolutionary timeframe
encompassed by the natural allotetraploid species.

Adams et al [6] demonstrated that homoeolog expression
in allotetraploid cotton has been strongly influenced by
developmentally regulated, organ-specific silencing,
resulting in subfunctionalization of the aggregate ances-
tral expression profile. This subfunctionalization may
occur immediately after polyploidization or may arise
over a longer period of evolutionary resolution [13,14].
The net effect is a process that appears to impose a form of

possible gene expression states
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Figure |

Phylogenetic context and inference of homoeologous expression evolution in Gossypium. (A) Phylogentic relation-
ships among the cotton accessions used in this study. An allopolyploidy event between A- and D-genome diploid species (red
star) created modern allopolyploid Gossypium hirsutum (AD,). Using models of the ancenstral genome donors (A, and D;), an
interspecific diploid hybrid (F,) was created (blue star). Although not a perfect match, the model A- and D-genome donors are
the best modern representatives of the diploids that underwent allopolyploidization to form AD, and, as such, provide the best
available reconstruction this ancient event. (B) Possible expression phenotypes and associated evolutionary inference. The far
left pie represents equal expression among model diploid progenitor species (denoted by A, and D). Given this starting condi-
tion, several expression states are possible following allopolyploidy or hybridization. Some potential outcomes are indicated by
the five pies on the right (A, and D, denote co-resident genomes, either in the hybrid or allopolyploid). (C) Detection of con-
served homoeolog-specific single nucleotide polymorphism (SNPs). Given an alignment of expressed sequence tag (EST)
sequences from orthologous genes from both diploid and allopolyploid genomes, species- and genome-specific SNPs (all SNPs
highlighted in gray) can be detected. The middle SNP is an example of a genome-specific SNP. With this conserved SNP,
homoeolog- and allele-specific microarray probes can be generated (potential microarray probe region highlighted in blue), and
used to assay expression in allopolyploid and hybrid species.
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selective retention on both homoeologs. Thus, expression
subfunctionalization leads to prolonged duplicate gene
retention, which may in turn enhance the potential for
spatial, temporal, or functional divergence of duplicated
genes.

Here we employ a novel microarray technology, which
uses homoeolog specific probe sets, to assess the relative
contribution of 1,383 homoeologous gene pairs to the
transcriptome of natural allopolyploid Gossypium hirsutum
and a synthetic, diploid F, hybrid (denoted as AD, and F,,
respectively). We show that the two genomes contribute
unequally to the total transcriptome of the allopolyploid.
By comparing these entities we demonstrate that, for a
substantial fraction of the genome, homoeolog expres-
sion biases occur immediately with the onset of genomic
merger. In addition, a greater number of homoeolog
expression biases appear in allopolyploid cotton that
likely were not instigated by genomic merger. These find-
ings indicate that upon allopolyploid formation, homoe-
olog expression biases happen in two, distinct temporal
phases.

Results

Assessment of microarray quality

We analyzed the relative A- and D-genome contributions
to the transcriptome of a synthetic F; hybrid and AD,
allotetraploid cotton. This was done by comparing these
mixed transcriptomes with the A, and D; model progeni-
tors as well as with a 1:1 mix of A, and Ds (Figure 1A). In
total, 7,574 homoeolog-specific probe sets (around 33%
of all possible) representing 1,383 unique EST contigs
(hereafter referred to as genes) were identified as being
reciprocally diagnostic with respect to identifying A- and
D-genome specific expression in the F, hybrid and
allotetraploid cotton. Thus, using conservative measures
(false discovery rate (FDR) < 0.05), we recovered 1,383
diagnostic genes, representing 2.6% (see [15]) to 4% (J
Hawkins, personal communication) of the genic content
of the cotton genome. As expected, a principal component
analysis on the natural log differences of A- and D-
genome expression distinguished among all accessions,
placing the AD,, F;, and 1:1 mix values intermediate
between A, and D along the first axis (see Figure S1 in
Additional file 1). This indicates that the homoeolog-spe-
cific probes have performed as designed, and can be
expected to yield useful estimates of A- and D-genome
contributions to the transcriptome. Furthermore, quanti-
tative mass-spectrometry validation of 12 homoeologous
gene pairs from AD, and 13 homoeologous gene pairs
from F, indicate that our findings regarding homoeolog-
specific expression are reproducible (comparisons
between platforms yielded R? values of 0.37 and 0.39 and
p-values of 0.035 and 0.022, for AD, and F,, respectively;
see Figure S2 in Additional file 1).

http://www.biomedcentral.com/1741-7007/6/16

Detection of genome expression biases in polyploid and F,
Gossypium

For each gene, a linear model was fit to the three replicate
measures of relative A- and D-genome contributions.
Using FDR corrected p-values (FDR < 0.15) from this
model, each gene from the AD, and F, samples was cate-
gorized as 'A-biased' (log ratio ((In(Apgpe) = In(Dpyobe))
statistically greater than 1:1 mix), 'D-biased’ (log ratio sta-
tistically less than 1:1 mix) or 'Equivalent' (log ratio not
statistically different from 1:1 mix); see Figure 2A. This
categorization system is a rudimentary representation of
the spectrum of homoeolog expression values, however,
all categorizations presented here are based on known ref-
erence samples, which mitigates the effects of differential
hybridization among homoeolog-specific probe pairs. In
addition, this categorization is a statistical description of
genome-specific transcript ratios and not a declaration of
biological relevance (as pertaining to phenotype) of
biases, which are unknown at present. Using this
approach, many diagnostic gene pairs (29.9% (414 out of
1,383) of AD, and 69.5% (961 out of 1,383) of F,) were
inferred to be equivalently expressed in petals. We infer
that these gene pairs showed no statistically significant
change in homoeologous (or allelic for the F, hybrid) con-
tribution to the transcriptome relative to the in vitro mid-
parent value. Among those genes exhibiting biased expres-
sion, there was an approximately 1.3x and 2.5x overrepre-
sentation of the D-genome biased genes in petal tissues of
AD, and F,, respectively (Figure 2A, B). In addition, we
detected 46 AD, and 6 F, genes that appear to be A-
genome silenced and 69 AD, and 5 F, genes that are D-
genome silenced, indicating a significant increase in
silencing in the AD, allopolyploid in both the A- and D-
genomes. For a limited sampling of genes, expression
biases comparable to those above have been demon-
strated previously in cotton [6,13,14,16].

Comparisons between hybridization (F;) and
allopolyploidization (AD,)

The comparison between the artificially synthesized F,
hybrid and the 1-2 MY old natural allopolyploid, G. hir-
sutum (AD,), allows us to assess the role genomic merger
plays in the allopolyploidization process [14,17]. The
inclusion of model A- and D-genome diploid progenitors
facilitates inference of ancestral expression states and,
hence, the directionality and pace of expression evolution
(Figure 1A, B). An additional temporal dimension to the
analysis concerns homoeolog-specific expression biases
detected in the AD, allopolyploid that were also detected
in the F, hybrid (Figure 2B, C). This is demonstrated by
both the sizable set of shared genes found within all
expression categories (Figure 2A) and the positive correla-
tion (Pearson's r = 0.391; p-value < 2.2 x 10-16) between
estimates of genomic contribution in the F, hybrid com-
pared with those from the allopolyploid (Figure 2C).
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Inferred contributions to the transcriptome by A- and D-genomes in a natural Gossypium allotetraploid and a
synthetic diploid hybrid. (A) A- and D-genome contribution to the transcriptome for 1,383 homoeologous/allelic gene
pairs. Each gene pair categorized based on a linear model analysis of three replicate measures of genomic contribution. 'Shared
genes' are those with expression patterns that are conserved between allotetraploid G. hirsutum (AD)) and the diploid F,
hybrid (F,). (B) Diagrammatic representation of the conservation of genes with biased expression. (C) Scatterplot comparing
the homoeolog expression log ratios found in the natural allotetraploid AD, to the synthetic F, hybrid. Each point represents a
single gene. The correlation (r) and bestfit line are indicated in red. This correlation has a p-value less than 2.2 x [0-!6, indicat-
ing that it is significantly different from zero. (D) Kernel density estimates of the homoeolog expression log ratios for all 1,383
genes from the |:1 mix (green line), F, hybrid (black line), and AD, allotetraploid (red line) cotton. This plot demonstrates an
erosion of equal contribution from both genomes and a shift toward more extreme values in the allopolyploid when compared
with the F, or |:I mix.

Overall around 24% (235 out of 969) of the genes withan  extremely biased AD, genes, when compared with the F,
A- or D-genome expression bias in the polyploid are also (1 and 18 gene(s), respectively, for shared A- and D-biased
found to be biased in the same direction in the F, hybrid.  sets). In addition, paired t-test for equality between AD,
This indicates that a significant portion of the expression ~ and F; values confirm that the differences in means
evolution associated with allopolyploidization may have = between AD, and F, are significantly different for D-biased
accompanied the initial genomic merger. genes (AD; mean = -0.45 and F; mean = -0.36; p-value =

6.63 x 10-5), and marginally non-significant for A-biased
An additional directional trend in the data is a tendency = genes (AD; mean = 0.46 and F, mean = 0.37; p-value =
for the allopolyploid genes to exhibit more extreme  0.07). Thus, for genes with immediate expression biases
expression biases (Figure 2D). Both the A- and D-genome  toward one parental Gossypium genome, stabilization and
biased genes demonstrate a greater number of more
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evolution of the allopolyploid genome preferentially con-
tinues to enhance this initial bias.

Discussion

Genomic merger and duplicate gene expression evolution
It has long been thought that gene and genome duplica-
tion may serve as a key source of evolutionary innovation
[18-23]. Recently, studies from a diverse array of organ-
isms have demonstrated that gene duplication stimulates
a variety of evolutionary outcomes [6,18,19,24-30]. These
studies have demonstrated that following duplication,
genes may evolve rapidly both at the sequence level and
in their expression profile. It is thought that much of this
change occurs as a result of the relaxation of purifying
selection that occurs following duplication [18-20,22].
During this period of relaxed selection, duplicate genes
either find new roles (neofunctionalize), partition ancestral
roles (subfunctionalize) or accumulate deleterious muta-
tions and decay as pseudogenes. These processes are
thought to occur on an evolutionary timescale measured
in thousands to millions of years; for example, it has been
estimated that the average half-life of duplicate gene pairs
is of the order of 3 to 7 MY for mammals, invertebrates,
and plants [19]. Here we have demonstrated that expres-
sion divergence among many genes duplicated by allopol-
yploidy (AD,) is already apparent at the stage of
interspecific genomic merger between two genomes (F,).
These genes, with conserved homoeologous biases
between an ancient allotetraploid and modern F, hybrid,
represent the proportion of loci we might expect to have
immediately experienced expression alteration at the time
of allopolyploid origin 1 to 2 MYA. These data indicate
that the critical parameter 'time to subfunctionalization'
[18,19], may actually be zero for a significant fraction of
the genome in allopolyploid plants. Thus, we conclude
that during allopolyploidization, genomic merger per se
plays a crucial and persistent role in determining subse-
quent evolutionary trajectories in homoeolog expression
patterns.

In addition to the foregoing set of genes inferred to have
experienced instantaneous expression alteration as a con-
sequence of genomic merger, an even larger class of genes
did not exhibit shared expression biases in the F; hybrid
and AD, allopolyploid. Specifically, 76% of the genes that
displayed biased expression in AD; were not biased in the
intergenomic F,. Reciprocally, about 44% (187 out of
422) of the genes with biased expression in the F, were not
biased in AD,. These differences of expression bias may
reflect (1) additional expression evolution in allopoly-
ploid cotton since the interspecific genomic merger via
the mechanisms of neo-, sub-, and non-functionalization
[18,20], (2) differences between the parents of the F,;
hybrid and the actual diploid progenitors of AD, (Figure
1A); that is, the extant diploids are good models but they

http://www.biomedcentral.com/1741-7007/6/16

are not the actual progenitors of allopolyploid Gossypium,
or (3) elimination of initial genome specific biases during
chromosome doubling or subsequent evolution of the
natural AD, allopolyploid.

It has been shown that genes belonging to some func-
tional categories are retained, following duplication, at a
higher than expected rate [24]. As a corollary, it might be
expected that gene function could also affect the likeli-
hood of retention of expression bias. To explore this, we
asked if genes from particular Gene Ontology (GO) [31]
categories were over- or under-contributing to particular
expression bias classes within the F, hybrid and AD, allo-
polyploid. Using the Blast2GO software [32], only two
GO categories were found to be significantly over-repre-
sented and none were under-represented (FDR < 0.05;
data not shown). Both significant GO categories were
inclusive high-level biological processes (cofactor meta-
bolic process (GO:0051186); and coenzyme metabolic
process (GO:0006732)), and were contained within the
equivalently expressed genes from the F, hybrid. We had,
however, only limited power (that is, small numbers of
genes within GO categories) to detect distortions between
the observed and expected frequencies of GO categories.
Thus, within our subset of analyzed genes, gene classifica-
tion does not appear to be a strong predictor of the direc-
tion or degree of genome-specific bias, although the
strength of this conclusion may be limited by our current
sample size.

Taken together, these data indicate that a significant pro-
portion (around 24%) of duplicate gene expression evo-
lution, ascribed to allopolyploid cotton, could have been
generated immediately during allopolyploid formation
by genetic and epigenetic factors associated with interspe-
cific genomic merger [4,5,33]. In addition, following allo-
polyploidy formation, subsequent duplicate gene
evolution plays a large role in shaping homoeolog expres-
sion patterns. Thus, both immediate and long-term evolu-
tionary processes contribute to homoeologous expression
patterns. Based on this we speculate that expression-
induced evolutionary novelty in allopolyploids occurs in
two distinct modes: first, an immediate, massive, and sal-
tational disruption of ancestral expression patterns
accompanying the polyploidization process; and then a
second, more gradual phase of expression evolution
mediated by the mechanisms of duplicate gene evolution
embodied in the traditional models [18,20] of the race
between duplicate gene preservation and pseudogeniza-
tion.

'Instantaneous subfunctionalization' could enhance
duplicate gene retention

The signature of paleopolyploidy (ancient polyploidy)
can be found in the genomes of all angiosperms [1-3,34-
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36]. In addition, a high proportion (30% to 50%) of pale-
ologs (duplicate gene pairs arising from a paleopoly-
ploidy event) can be retained for millions of years
[3,18,34]. Adams and Wendel [14] have shown that A-
and D-genome allelic pairs at the Adh locus display recip-
rocal silencing across multiple tissues in two Gossypium F,
hybrids. Thus, upon genomic merger ancestral gene
expression domains are immediately partitioned and puri-
fying selection is placed on both duplicate gene pairs,
thereby increasing the probabilities of co-retention. To the
extent that the results of Adams and Wendel [14] are mir-
rored by the present analysis, we have demonstrated that,
in petals, around 17% (235 out of 1,383; Figure 2A) of the
homoeologous gene pairs studied could potentially fit
this model, by having been found to be biased immedi-
ately in the F, and by having that bias retained throughout
allopolyploidy. If we extrapolate this finding to the entire
Gossypium genome, it would indicate that, following poly-
ploidization, a large number of homoeologs could be
retained by 'instantaneous subfunctionalization', occur-
ring solely from the initial effects of genomic merger. Fur-
thermore, given that these biases appear to have been
maintained for about 1 to 2 MY following polyploidiza-
tion, this immediate form of expression bias may play an
underappreciated role in the retention of duplicate genes
following whole genome duplication [6].

Tissue-specific expression dominance

An intriguing aspect of the expression bias data is that for
both natural AD, allopolyploid and the interspecific F;
hybrid, a greater number of genes exhibited a D-genome
bias than the reverse (Figure 2A, B). This bias favors the
paternal D-genome genome, and stands in contrast to the
recently reported A-genome bias described for ovular tis-
sue [16]. To the best of the authors' knowledge, this is the
most extensive example of widespread paternal domi-
nance. When considered in light of the results of Yang et
al [16], our data suggest that neither Gossypium genome is
globally dominant with respect to expression, but that
instead, each genome may have local dominance in cer-
tain tissue types or developmental stages. This finding
confirms previous results in Gossypium [6,11] but differs
from recent analysis of allotetraploid Arabidopsis [37]. In
the latter study, leaf and flower bud tissues from a syn-
thetic Arabidopsis allotetraploid were shown to exhibit
dominance favoring only its A. arenosa parent, with
genome-wide suppression of the A. thaliana parental con-
tribution. In the tissues that have been studied in Gossyp-
ium and Arabidopsis, it appears that both species
demonstrate biased parental contributions to the tran-
scriptome, however, in Gossypium these biases can favor
either parental genome, whereas in Arabidoposis only the
A. arenosa parent has demonstrated dominance. These
findings reflect the importance and perhaps ad hoc nature

http://www.biomedcentral.com/1741-7007/6/16

of specific genomic combinations and their interactions
during allopolyploidization.

Among instantaneously subfunctionalized genes, genomic
biases tend to become more extreme during subsequent
allopolyploid evolution

A notable observation in the present study is that genes
showing biased expression patterns, tend to have more
extreme biases in the AD, allopolyploid (Figure 2D),
including a much larger number of silenced genes (115
total), when compared with the F, (11 total). One possi-
ble explanation for enhancement of genome-specific
expression in allopolyploid cotton could be that immedi-
ately acting epigenetic effects become evolutionarily stabi-
lized, either by natural selection or neutral processes. If
this stabilization process is predisposed (through neutral
or adaptive mechanisms) toward enhancing the initial
expression bias, the result would be evolution toward a
more extreme bias. This amplification of expression bias,
which to our knowledge has not been described previ-
ously, may represent an additional factor underlying the
genesis of phenotypic novelty in allopolyploid species.

Conclusion

These results extend previous findings of homoeolog
expression biases in hybrid and allotetraploid cotton
[6,11,13,14,16]. By employing microarray technology to
analyze a large number of genes, we describe the general
phenomenon of genomic expression bias in both a mod-
ern synthetic F; hybrid and an ancient allotetraploid. Fur-
thermore, for petal tissues, these biases favor the parental
D-genome and have become more extreme in the
allotetraploid when compared with the F, hybrid. By com-
paring homoeolog contributions to the transcriptome
from the F, hybrid and AD, allotetraploid, it was possible
determine the role of genomic merger in producing
homoeolog expression biases. Given this comparison, we
have shown that a significant fraction of the expression
biases found in the allotetraploid is likely initiated imme-
diately by genomic merger. A still larger fraction of the
expression biases is inferred to have arisen from long-term
evolutionary processes, thus implicating two temporally
distinct phases of expression evolution following allopol-
yploidization.

Methods

Plant materials, experimental design, RNA isolation, and
microarray preparation

Three replicate blocks of four Gossypium accessions (A, |
D; | A,Q XDsJ'F; | AD;; Table 1) were grown in the Pohl
Conservatory at lowa State University, Ames, IA. These
four accessions include representatives of both diploid
progenitor genomes (A- and D-genomes) of natural allo-
polyploid cotton, their synthetic F, hybrid, and an
allotetraploid, respectively [8] (Figure 1A). Petals from all
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four accessions were harvested on the day of anthesis and
three biological replicates were generated by pooling tis-
sues from a minimum of eight flowers obtained from
three individuals, or alternatively from a minimum of
three flowers from a single individual if multiple individ-
uals were not available (applicable only to F; hybrid).
RNA extractions were performed following a modified hot
borate procedure optimized for Gossypium [38]. All RNA
samples were quantified and visually assessed for degra-
dation and DNA contamination via a Bioanalyzer (Agilent
Technologies, Santa Clara, CA). From each pair of A, and
D, replicates, an equimolar RNA mix (1:1 mix) was made.
RNA samples were sent to NimbleGen Systems (Madison,
WI), for cDNA synthesis, labeling, and hybridization to
15 microarrays, following proprietary protocols.

Homoeolog-specific microarray platform

We have designed and implemented a novel microarray
platform capable of measuring homoeolog-specific
expression in Gossypium species (Figure 1B). The utility of
this design has been demonstrated with our first-genera-
tion arrays [11], but rapid developments in the depth of
cotton EST resources, EST assembly quality, and microar-
ray probe density enabled us to create a second-generation
platform, which was used in this study. A description of
the microarray design can be found in Additional file 1.
This second-generation platform features oligonucleotide
probe-pairs near 35 bases in length differing by an A- or
D-genome homoeolog-specific single nucleotide poly-
morphism (SNP) at their middle base (Figure 1C, box).
Thus, the microarray platform has the ability to measure
expression levels separately for each homoeolog, detected
by the corresponding homoeolog-specific probe.

Statistical analysis

Raw data values for each microarray were natural log
transformed, median centered, and scale normalized
across all arrays prior to analysis. For each homoeolog
probe pair the difference of natural logs of the A- and D-
homoeolog-specific probe was calculated ((In(Appe) -
In(Dy,;0ne); hereafter referred to as log ratio). Using this
approach, positive values indicate an A-genome bias,
whereas negative values indicate a D-genome bias. A lin-
ear model including effects for replication and genotype

Table I: Details of plant materials used in this study

http://www.biomedcentral.com/1741-7007/6/16

was fit to the log ratio data from each probe to identify the
subset of probes that diagnostically detected homoeolog-
specific expression. This was done by filtering for only
those probes in which the log ratio for A, was significantly
(FDR < 0.05; see [39]) and appreciably greater (fold
change of at least 1.5) than the 1:1 mix of A, and D5, and
the 1:1 mix log ratio was significantly and appreciably
greater than Ds (A, > 1:1 mix > Ds). The resulting, empir-
ically identified, probe sets can diagnose homoeolog-spe-
cific expression levels within transcriptionally mixed A-
and D-genome hybrid and allopolyploid RNA samples.

Following the identification of all diagnostic probes, con-
tig-level log ratio values were determined by calculating a
robust average of the log ratio values from all diagnostic
probe sets within a contig using Tukey's Biweight method.
A linear model including effects for replication and geno-
type was fit to this contig-level data, allowing the estima-
tion of all possible contrasts between A,, D, 1:1 mix, AD,,
and the F, hybrid. The contrasts between the AD, and F,
samples and the 1:1 mix allow us to diagnose change rel-
ative to the in vitro mid-parent value of the A, and D, dip-
loids. In addition, these contrasts account for the specific
hybridization kinetics of each probe, when faced with a
genomically mixed transcript pool. This is useful, as it can
factor out non-linear competitive interactions that may
occur as a result of the interaction between A- and D-
genome transcripts.

Given the distributions of p-values from AD, versus 1:1
mix and F, versus 1:1 mix contrasts, we estimated the
expected number of true null hypotheses, using the proce-
dure of Nettleton et al [40]. It was determined that
approximately 495 and 884 genes were true nulls, and
thus not statistically different in mean log ratio from the
1:1 mix, for AD, and F,, respectively. Using these esti-
mates from the AD, versus 1:1 mix and F, versus 1:1 mix
contrasts, we selected an FDR threshold for significance
[41] of 0.15 to strike a reasonable balance between the
expected number of false positives and false negatives.
FDR significance thresholds of 0.05 and 0.10 were exam-
ined as well and can be found in Table S1A, B in Addi-
tional file 1.

Species name Genome designation Accession Ploidy level Location of origin
G. arboreum A, cv. AKA-8401 Diploid Africa
G. raimondii Ds Accession unnamed Diploid Peru
G. arboreum X G. raimondii F| hybrid A,Q XD Accession unnamed Diploid Synthetic hybrid
G. hirsutum AD, cv. Maxxa Allotetraploid Mexico/Central America

Natural allotetraploid Gossypium evolved | to 2 MYA from diploid A- and D-genome progenitors, most similar to the modern species G. arboreum
and G. raimondii [8, 43]. The A-genome parent is the inferred cytoplasmic donor to G. hirsutum [44, 45], and thus the F, cross was created in the

same manner, with A, as the maternal parent.
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Using the A, and D5 diploids as a reference measure of
pure A- or D-genome expression gives us the ability to dis-
cover cases of genome-specific gene silencing in both AD,
and F,. These putative cases of silencing can be detected as
log ratio values that are greater than or equal to the A, dip-
loid parent or less than or equal to the D5 diploid parent.
Using this definition of silencing, we were able to detect
gene silencing in both the AD, and F, accessions.

Validation of microarray results with Sequenom
quantitative mass-spectrometry

Validation of our microarray results was performed for 13
randomly selected homoeologous gene pairs using Seque-
nom quantitative mass-spectrometry following the meth-
ods of Stupar and Springer [42]. Aliquots of RNA
transcripts used for microarray hybridizations were ana-
lyzed for A- and D-genome contributions to the transcrip-
tome for AD, and F, samples (the validation design can be
found in Additional file 1). Briefly, the Sequenom tech-
nology amplifies A- and D-derived ¢cDNA transcripts in
parallel, and then quantifies relative homoeolog abun-
dance based on matrix-assisted laser desorption/ioniza-
tion time-of-flight mass-spectrometry. All Sequenom
assays were conducted at the University of Minnesota
Genotyping Facility.
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