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Abstract

Background: The proteasome is a multi-subunit protein machine that is the final destination for cellular proteins
that have been marked for degradation via an ubiquitin (Ub) chain appendage. These ubiquitylated proteins either
bind directly to the intrinsic proteasome ubiqutin chain receptors Rpn10, Rpn13, or Rpt5, or are shuttled to the
proteasome by Rad23, Dsk2, or Ddil. The latter proteins share an Ub association domain (UBA) for binding poly-Ub
chains and an Ub-like-domain (UBL) for binding to the proteasome. It has been proposed that shuttling receptors

dock on the proteasome via Rpn1, but the precise nature of the docking site remains poorly defined.

Results: To shed light on the recruitment of shuttling receptors to the proteasome, we performed both site-
directed mutagenesis and genetic screening to identify mutations in Rpn1 that disrupt its binding to UBA-UBL
proteins. Here we demonstrate that delivery of Ub conjugates and docking of Ddi1 (and to a lesser extent Dsk2) to
the proteasome are strongly impaired by an aspartic acid to alanine point mutation in the highly-conserved D517
residue of Rpn1. Moreover, degradation of the Ddil-dependent proteasome substrate, Ufo1, is blocked in rpni-
D517A yeast cells. By contrast, Rad23 recruitment to the proteasome is not affected by rpn1-D517A.

Conclusions: These studies provide insight into the mechanism by which the UBA-UBL protein Ddil is recruited to
the proteasome to enable Ub-dependent degradation of its ligands. Our studies suggest that different UBA-UBL
proteins are recruited to the proteasome by distinct mechanisms.

Background
Protein degradation via the ubiquitin proteasome system
(UPS) is one of the cell’s tools for selective negative regu-
lation of intracellular proteins. Degradation via the UPS
has roles in maintaining protein quality control, signal-
ing, and cell cycle progression [1,2]. Ubiquitin is a small
protein that is highly conserved in eukaryotes and is the
crux of the UPS system. The UPS system is built upon
three classes of enzymes—E1, E2 and E3- that act sequen-
tially to build ubiquitin chains on protein substrates.
Once a protein substrate has been modified by a chain of
at least four ubiquitins, it is then degraded by the 26S
proteasome in an ATP-dependent manner [3,4].

The proteasome is a 33-subunit protein complex that is
involved in turning over a minimum of 20% of the yeast
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proteome (SCUD; http://scud.kaist.ac.kr/index.html).
Other lines of evidence suggest that the vast majority of
cytoplasmic protein degradation is mediated by the pro-
teasome [5]. The proteasome is composed of two main
components: a 20S catalytic core particle (CP) and a 19S
regulatory particle (RP). The 19S regulatory particle can
be dissected into two sub-complexes, the lid and the
base. The base sub-complex is composed of two non-
ATPase subunits, Rpnl and Rpn2, as well as six ATPase
subunits (Rptl to 6) that are thought to unfold and feed
substrate into the CP.

How ubiquitylated substrates converge onto the pro-
teasome is an active area of research that has been stu-
died with the greatest depth in Saccharomyces cerevisiae.
So far, at least two independent mechanisms have been
discovered. In the first case, the yeast proteasome con-
tains two intrinsic receptors, Rpn10 and Rpn13, that con-
tain defined ubiquitin binding domains [6,7]. Mammalian
proteasomes contain a third intrinsic receptor, Rpt5 [8].
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Rpnl0 contains a highly conserved ubiquitin interaction
motif (UIM), whereas Rpn13 binds ubiquitin via a pleck-
strin motif that was not previously known to interact
with ubiquitin [6,7]. Although neither Rpn10 nor Rpnl13
is essential, rpn10A and rpnl3A mutants exhibit pheno-
types consistent with a role for these proteins in the
docking of substrates to the proteasome. Rpt5 can be
cross-linked to ubiquitin chains, but the means by which
it binds ubiquitin and the genetic significance of this
activity remain to be determined. Substrates may be able
to bind the proteasome directly via these three intrinsic
receptors.

In the second mode of delivery to the proteasome,
receptors, including the budding yeast Rad23, Dsk2, and
Ddil proteins, contain an N-terminal ubiquitin like
domain (UBL) that binds to the proteasome and a C-
terminal ubiquitin association domain (UBA) that binds to
ubiquitin chains [9-12]. Unlike Rpn10 and Rpn13, these
proteins are not stoichiometric subunits of the protea-
some. Instead, it is thought that this class of proteins
rapidly cycles on and off the proteasome [13], serving as
‘shuttle’ receptors that bind substrates in the cytoplasm
and nucleus and deliver them to the proteasome. The
UBA-UBL proteins dock at the proteasome by binding the
largest subunit of the proteasome, Rpnl [12,14,15],
although recent evidence suggests that the UBA-UBL pro-
teins also bind other subunits within the proteasome. For
example, multiple lines of evidence suggest that in yeast
Dsk2 may also be able to interact with Rpn10 and Rpn13,
and yeast Rad23 may also bind Rpt6 [7,16-18]. Human
Rad23 is also able to bind both human Rpn10 and Rpn13
[7] and in an NMR experiment, binding of yeast Rad23 to
Rpn10 was observed [18].

While it is clear that substrates can use two different
mechanisms to engage the proteasome, we still do not
understand how substrates are allocated to one targeting
pathway or the other. While there is evidence that some
protein substrates utilize both the intrinsic and shuttling
receptors [19], some proteasomal substrates are entirely
dependent on either Rpnl0 or Rad23 [20]. Moreover,
although Rpnl0 and Rpnl3 are undoubtedly important
receptors, electron microscopy and quantitative mass
spectrometry data suggest that there are two populations
of proteasomes, those containing and those not contain-
ing the intrinsic receptors [21-23]. Furthermore, deletion
of RPN10 or RPN13 does not lead to profound deficits in
cellular protein degradation [6,7,24]. Finally, while highly
conserved [25], the UBA-UBL proteins are not essential
for yeast cell growth [24,26,27]. Thus, although the pro-
teasome itself is essential, none of the receptors that link
substrates to the proteasome (with the exception of Rpt5)
is essential. This has led to the assumption that targeting
of substrates to the proteasome occurs by multiple,
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partially redundant mechanisms. Obtaining a clear
understanding of how each pathway contributes to sub-
strate recognition by the proteasome is of considerable
importance given the central role of the UPS in regula-
tory biology and the clinical significance of the protea-
some as a target for cancer therapy [28,29].

Rpnl, the largest subunit of the proteasome, contains
nine repeat segments, known as leucine rich repeats
(LRR), which adopt horseshoe-shaped structures that are
thought to be generally important for protein-protein
interactions [30]. The LRR domain of Rpnl is thought to
form a slightly open monomeric a.-solenoid [31,32]. The
first five contiguous repeat segments constitute LRR1,
whereas the next four contiguous LRR repeats form
LRR2. A 134 acidic amino acid stretch links LRR1 and
LRR2 [15,33]. The minimal region sufficient for Rad23
binding to Rpnl has been mapped to residues 417 to 628,
which comprise LRR1 and an adjacent 21-residue acidic
stretch on the C-terminal side. The UBL domains of
Dsk2 and Ddil have also been shown to interact with the
LRR domain of Rpnl [14,15,34-36].

To gain a better understanding of how substrate deliv-
ery to the proteasome is controlled, we sought to identify
an Rpnl mutant that is defective in binding the UBA-
UBL receptor proteins. We identified two mutations that
disrupted binding of the UBA-UBL protein Ddil to the
proteasome. Docking of Dsk2 to the proteasome was also
moderately affected by these mutations in some genetic
backgrounds. The delivery of ubiquitin conjugates to the
proteasome was diminished in an rpn1-D517A single and
even more so in an rpnl3A rpnl-D517A double mutant.
Lastly, we show that the rpnI-D517A mutation stabilizes
the Ddil substrate, Ufol.

Results
Rpn13°! *° 642 jnteracts with UBL domain proteins

To screen for mutations in Rpnl that disrupt binding to
UBA-UBL proteins, we engineered a reverse yeast two-
hybrid system that reports on association between a frag-
ment of Rpnl (amino acids 391 to 642), a fragment includ-
ing regions previously shown to be necessary and
sufficient for UBA-UBL binding and four distinct UBL-
containing proteins (Rad23, Dsk2, Ddil, and the deubiqui-
tinase Ubp6) known to interact with the proteasome
[15,34,36-38]. Productive binding between Rpn13°! to 642
and UBL proteins was expected to drive expression of
HIS3 and URAS3, resulting in growth on 3-aminotriazole
(3-AT) and inability to grow on 5-fluoroorotic acid
(5FOA) (Figure 1A). Growth assays revealed that Rpn1**!
to 642 was capable of binding to Rad23, Dsk2, Ddil and
Ubpé6 in yeast cells, whereas a Ddil fragment lacking its
UBL domain and Rpn2, a proteasomal subunit, were
unable to bind Rpn1*** * ®** (Figure 1B).
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Figure 1 Eighteen Rpn1 residues may be important for binding UBL domain proteins. (A) The utilized yeast two hybrid system allows for
both positive (growth on -HIS, -URA, +3-AT) and negative counter selection (growth on 5FOA) of UBL- Rpn1°" © ©* interaction. (B) Rpn1*°'%%
was sufficient for binding UBA-UBL proteins in a yeast two-hybrid system. Yeast cells were co-transformed with plasmids expressing Gal4-DBD
fused to Rpn1*" © %2 (Rpn17%" *© *’DB) and Gal4-AD fused to either Rad23, Dsk2, Ddi1, Upb6, Ddi1AUBL or Rpn2. Protein-protein interaction is
indicated by growth on 100 mM 3-AT and lack of growth on 0.2% 5FOA. (C) Representative rpn1 alleles found in the RY2H screen did not
interact with Rad23 in the context of an Y2H experiment. (D) Sequence and secondary structure prediction alignments of yeast Rpn1 with
mouse Rpn1 were made with MultiAlin http://multalin.toulouse.inra.fr/multalin/multalin.html using the model structure of Rpn1 [32]. Identical
residues (black) and similar residues (gray) are indicated. Mutations identified in the RY2H that disrupt the interaction of Rpn1*°""**? with Rad23
and Dsk2 are indicated in red and rationally-designed mutations are indicated in blue. Mutant rpon1 alleles were plasmid shuffled into an rpniA
yeast strain and assayed for viability and proper 26S assembly. The positions of the identified mutations are indicated in the figure. A (-) indicates
that assembly and viability were like wild type, a (+) indicates that we observed defects in proteasome stability (Figure S3) and (nd) indicates the
strain was inviable. (E) The relative position of residues of interest from the RY2H screen and the rational sites chosen in (D) are shown on a
model structure of Rpn1 proposed in reference 32. Residue A418 is not included in the model. The colors represent the residues indicated in the
key.

Identification of mutations in Rpn137 * 42 that block
binding to UBL domain proteins

Using growth on 5FOA as a positive selection for loss of
interaction between Rpn13°! *° *> and UBL proteins, we
screened a PCR-mutagenized allele library containing over
500,000 individual clones coding for Rpn1?®* * ¢*2 and
selected for mutants that could no longer interact with
Rad23 (964 colonies were isolated) or Dsk2 (322 colonies).
We screened these 1,286 transformants for their ability to
reproduce their 5FOA® phenotype. One hundred, ninety

colonies that again tested 5SFOAR were sequenced. Forty-
two of the sequenced 5FOAR clones contained a mutation;
single amino acid substitutions were identified in 32
clones, while silent mutations (4), and truncation or fra-
meshift events (6) made up the remainder. Plasmids con-
taining single Rpnl mutations were then retransformed
and assayed for their ability to reproduce the 5FOA® phe-
notype. Twelve amino acid substitutions in 11 different
residues of Rpnl were identified as testing positive after
being retransformed into our RY2H reporter strain
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(Figures 1C, D). Given that a structural model of the LRR
region of Rpnl exists [32], we also generated a panel of six
‘rational’ mutations that perturb residues predicted to be
on the outside surface of the LRR domain (Figure 1D).
The relative positions of the mutations discovered in the
‘reverse yeast 2-hybrid’ screen and the rational mutations
are shown on the model structure of the Rpnl LRR
domain (Figure 1E).

Mutant rpnT alleles display synthetic growth defects in
combination with ubiquitin receptor mutants

To evaluate whether any of the mutations in our panel of
18 substitutions had an effect on proteasome function,
we reconstructed them into full-length RPNI and per-
formed a ‘plasmid shuffle’ to replace the essential RPNI
gene with each of our mutant alleles. A yeast rpnlA
strain sustained by wild type RPN1 on a URA3 plasmid
was individually transformed with a LEU?2 plasmid bear-
ing each mutant rpnl allele and the cells were plated on
5FOA to identify clones from which the JRA3 plasmid
was evicted. We recovered 5FOA-resistant colonies from
all transformants with the exception of rpn1>**, indicat-
ing that 17 of our alleles retained at least partial RPN
function. To evaluate the impact of our Rpnl mutations
on proteasome function, we plated cells on medium
supplemented with the proline analog l-azetidine-2-
carboxylic acid (AZC). Cells with defective proteasome
function are sensitive to AZC [39,40], presumably
because its incorporation into proteins causes misfolding,
thereby placing an elevated demand on cellular quality-
control pathways. As shown in Figure 2A and Additional
file 1, Figure S1A, none of our mutants was hyper-sensi-
tive to AZC.

Multiple receptors dock ubiquitinated substrates to
the proteasome, including not only the UBL domain
proteins but also Rpnl0 and Rpnl13 [7,20]. Unlike the
other subunits of the proteasome, Rpnl0 and Rpnl3 are
not essential. Therefore, we sought to test whether
mutations in these receptors might sensitize cells to our
rpnl alleles. Deletion of RPN13 by itself did not cause
sensitivity to AZC (compare top rows of Figures 2A,
2B). However, a subset of our rpnl mutants (both
rational and RY2H derived) exhibited striking sensitivity
to AZC when combined with rpni13A (Figure 2B and
Additional file 1, Figure S1B). To test whether this syn-
thetic defect was due to the role of Rpnl3 as an Ub
receptor, the five rpnl mutants showing the most strik-
ing phenotypes were introduced by plasmid shuffle into
an rpnl3-KKD strain that contains a triple point muta-
tion that inactivates the ubiquitin binding domain [7].
Four of the five tested rpnl alleles showed a similar
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Figure 2 Mutant rpn1 alleles display genetic interactions with
mutations in genes for intrinsic ubiquitin receptors. Five-fold
serial dilutions of cells were plated onto the indicated media. The
rpn1 mutants (rpn1*) were plasmid shuffled into an rpn1A strain
containing (from top to bottom) either no additional mutations (A)
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synthetic growth defect in the rpn13-KKD mutant back-
ground (Figure 2C). These data indicate that our Rpnl
mutant proteins sensitized cells to loss of an intrinsic
proteasome ubiquitin receptor.

Given the synthetic effects seen with RPN13 alleles, we
sought to test whether the same subset of rpnl mutants
exhibited genetic interaction with RPN10. Rpnl0 con-
tains two domains: a VWA domain that appears to play a
structural role and an ubiquitin-binding UIM domain.
We used plasmid shuffle to introduce rpnl alleles into a
mutant, rpnl0-uim, in which the UIM domain is inacti-
vated by a cluster of point mutations [41,42]. Whereas
neither the individual rpnl mutants (Figure 2A) nor
rpnl0-uim (Figure 2D) was hypersensitive to AZC, the
double mutants exhibited striking sensitivity (Figure 2D).
Similarly, we also found that the same rpn1 alleles further
sensitized an rpnl3-KKD rpnl0-uim strain to AZC
(Figure 2E).

As a test for specificity, we introduced the same set of
rpnl mutations into an rpn4A background. Rpn4 is a
transcription factor that promotes proteasome gene
expression, and rpn4A mutants have reduced protea-
some levels and show synthetic phenotypes with a num-
ber of mutations that impinge on proteasome function
[43,44]. In contrast to the results seen with rpni3A,
rpnl3-KKD, and rpnl0-uim, none of the five rpnl
mutants tested exhibited a synthetic AZC-sensitive phe-
notype when combined with rpn4A (Figure 2F). Taken
together, these data suggest that the rpnl mutant alleles
impinge specifically on compromised receptor function,
and do not cause general proteasome impairment.

Recruitment of Ddi1, Dsk2 and ubiquitin conjugates to
proteasomes is compromised in rpn1-D517A and rpn1-
K484A mutants

We next aimed to determine if any of the rpnI mutations
that showed genetic interactions with rpnl0-uim and
rpnl3-KKD led to defects in recruitment of UBL contain-
ing proteins to the proteasome. To address this question,
we first tagged RPN11 with sequences encoding the Flag
epitope in a selection of rpni3A rpnl mutants. We
included rpni3A in this analysis due to potential redun-
dancy between Rpnl3 and Rpnl for binding UBL
domains. Proteasomes were immunoprecipitated from
these strains and immunoblotted for the presence of UBL
proteins. All double mutant proteasomes that were ana-
lyzed contained equivalent levels of associated Rad23,
Dsk2 and Rpnl0O except for rpnl-DS17A and rpnl-
K484A, both of which exhibited reduced levels of bound
Dsk2 (Figure 3A). None of our rpnl single mutants by
themselves or in the rpn10-uim background showed sig-
nificantly reduced levels of proteasome-bound Dsk2 (see
for example the rpnI-D517A mutant in Additional file 2,
Figure S2A, B; additional data not shown). To see if we
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could identify other binding-defective rpnl mutations,
we generated an additional set of ‘rational’ rpnl alleles
and tested them by using plasmid shuffle to introduce
the alleles into an RPN1174% rpnlA rpni3A background,
followed by immunoprecipitation of the proteasomes and
immunoblotting for UBL proteins. None of these
mutants, which are listed in Additional file 3, Table S1,
exhibited a greater UBL binding defect than the D517A
or K484A alleles and so they were not pursued further.

Based on the proteasome association studies, we focused
our attention on the K484A and D517A mutants. To eval-
uate the association of UBL proteins in greater depth, we
retrieved proteasomes from both mutants (in an rpni3A
background) and immunoblotted the immunoprecipitates
to determine their content of Rad23, Dsk2, Ddil, Ubpé,
and total ubiquitin conjugates. The immunoblots are
shown in the left panels of Figure 3B and densitometric
quantification of the results is presented in the right panel.
Proteasomes from both rpnl rpnl13A mutants contained
normal or near-normal levels of the UBL proteins Ubp6
and Rad23. In this experiment the levels of Dsk2 were
higher than those observed in Figure 3A, possibly because
the immunoprecipitation was done under less stringent
conditions. Interestingly, proteasomes recovered from
rpnl3A rpnl-D517A cells contained reduced levels
of Ddil and total ubiquitin conjugates compared to
proteasomes retrieved from either wild type or rpni3A
rpnl-K484A cells. Similar results were obtained with pro-
teasomes from rpni-D517A and rpnl0-uim rpnl-D517A
cells (Additional file 2, Figures S2A, B). ). These results
indicate that mutation of the D517 residue of Rpnl by
itself was sufficient to destabilize Ddil docking, and in
combination with loss of Rpn13 modestly destabilized
Dsk2 binding. We were intrigued by the mild defect in
Dsk2 binding to rpnl3Arpnl-D517A proteasomes and
questioned if combining rpnl0-uim, rpnl3-KKD, and
rpnl-D517A mutations might yield a stronger defect in
recruitment of Dsk2 since interaction of the UBL proteins
has been observed with Rpn10 and Rpnl13 [17,18]. We
retrieved 10 proteasomes from both a double rpn10-uim
rpnl3-KKD and a triple rpnl0-uim rpnl3- KKD rpnl-
D517A mutant and immunoblotted the immunoprecipi-
tates to determine their content of Dsk2 and Ddil. Protea-
somes from an rpnl0-uim rpnl3-KKD rpnl-D517A strain
contained fewer Ub conjugates in comparison to an iso-
genic strain containing wild type Rpnl (Additional file 2,
Figure S2C). Additionally, we quantified the change in the
binding of Ddil and Dsk2 and again observed diminished
recruitment of both proteins in the presence of the Rpnl-
D517A mutation (Additional file 2, Figure S2C, right
panel). This led us to investigate the effect of the Rpnl-
D517A mutation in greater detail.

To determine whether Rpn1-D517A proteasomes were
generally defective, we characterized them biochemically
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Figure 3 Ddi1, Dsk2, and Ub conjugate recruitment to the proteasome is compromised in rpn1-D517A and rpn1-K484A. (A) Affinity-
purified rpn13A rpni1-K484A and rpni3A rpni-D517A proteasomes contain reduced levels of Dsk2. Detergent was present during the binding step
of the anti-Flag immunoprecipiation as described in the Methods section. (B) Affinity-purified rpni13A rpn1-D517A proteasomes contain reduced
levels of Ddi1 and Ub conjugates. Levels of UBA-UBL proteins, the lid subunit Rpn12 and polyubiquitin are shown for affinity purified
proteasomes (IP) and in the whole cell extract input (WCE). This purification was performed in the absence of detergent. Densitometric
quantification of the blot is shown (right panel). The amount of UBL protein was normalized to Rpn117< and wild type levels were set as
100%. (C) Proteasomes isolated from rpn1-D517A are intact. SDS-PAGE and native gel analysis of affinity purified 26S proteasomes from Rpn11-
Flag tagged strains. The native gel was incubated with Suc-LLVY-AMC in the presence of ATP and 0.05% SDS to visualize RP and CP activity. The
isoforms of the 26S proteasome are indicated. (D) Quantitative SILAC isotopic ratios are shown for all subunits of the proteasome isolated from
an rpni3A strain (labeled with heavy isotopes; “H") in comparison to proteasomes isolated from an rpni13A rpn1-D517A strain (labeled with light
isotopes; "L").
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and found them to be completely normal by multiple
methods. Purified Rpn1-D517A proteasomes exhibited a
normal subunit composition when evaluated by SDS-
PAGE (Figure 3C, left panel). Moreover, native nondena-
turing gel electrophoresis verified that these proteasomes
(Figure 3C, right panel) and those of all of the other
strains indicated in Figure 1D (data not shown) were
properly assembled and had normal chymotryptic activ-
ity. In fact, although we were manipulating the largest
scaffolding subunit of the proteasome, only a small num-
ber of the mutations we studied had any negative conse-
quences on proteasome stability (Figure 1D and
Additional file 4, Figure S3). To characterize in detail the
impact of the Rpn1-D517A mutation on proteasome
composition, we performed a quantitative mass spectro-
metry technique, SILAC (stable isotope labeling with
amino acid in cell culture). For this experiment,rpnl3A
cells were grown in medium supplemented with heavy
isotopes of lysine and arginine while rpn13A rpnl-D517A
cells were grown in medium with ‘light’ lysine and argi-
nine. The two cultures were mixed immediately prior to
lysis and proteasomes were purified by affinity chromato-
graphy on an anti-Flag resin. The purified sample was
then analyzed by multidimensional mass spectrometry
and the heavy/light ratios for peptides derived from pro-
teasome subunits were determined (Figure 3D). This sen-
sitive analysis confirmed that rpnI-D517A does not cause
any apparent physical change in the proteasome.

While we did measure a slightly reduced level of Rad23
in rpnl3A rpnl-DS17A proteasomes by immunoblotting,
our SILAC data indicated that the levels of Rad23 and
Ubp6 were largely unaffected in rpni3A rpnl-D517A
proteasomes, as they had heavy to light (H/L) ratios of
0.9 and 0.98 respectively. This is not unexpected, since it
was reported in a prior SILAC study that the free and
proteasome-bound pools of human Rad23 rapidly equili-
brate in cell lysate [13]. Unfortunately, Ddil and Dsk2
peptides were not seen in our SILAC experiment. Cap-
turing the association of all three UBA-UBL receptor
proteins with proteasomes in native preparations is chal-
lenging, likely because these proteins interact very dyna-
mically with the proteasome [13]. For instance, the
association of Dsk2 with the proteasome has been
reported to be difficult to capture [45]. Additionally, only
one published mass spectrometry study has been able to
simultaneously capture Rad23, Dsk2 and Ddil with the
proteasome, and that study relied on chemical cross-link-
ing to stabilize the association of dynamically-bound pro-
teasome interactors [46].

In vitro confirmation of a Ddi1 binding defect of
Rpn13-deficient Rpn1-D517A mutant proteasomes

As an orthogonal approach, we sought to perform an in
vitro binding assay that would confirm our analysis of
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proteasomes purified from mutant cells. Proteasomes
were affinity purified from cells expressing Flag-tagged
Rpnll and incubated with recombinant GST-UBA-UBL
proteins. Proteasomes affinity purified from rpni34 cells
were successfully pulled-down by all three baits. How-
ever, Rpnl3-deficient Rpnl-V447H K484A D517A
(VKD) proteasomes exhibited strongly diminished bind-
ing capacity for Ddil (Figure 4). It should be noted that
Rpn13-deficient Rpn1-V447H K484 A D517A proteasome
mutants behaved just as a Rpn13-deficient Rpn1-D517A
mutant proteasomes in native immunoprecipitation
experiments (Additional file 3, Table S1 and data not
shown). However, it was surprising that we did not see a
loss of Dsk2 binding to proteasomes isolated from an
rpnl3Arpnl-VKD strain. It is possible that the effect of
the D517A mutation on Dsk2 binding was subtle, and
was overcome by mass action due to the high level of
GST-Dsk2 employed in the pull-down.

rpn1-D517A mutants exhibit a selective defect in protein
degradation

It is thought that UBA-UBL proteins exhibit some degree
of selectivity in targeting specific substrates to the protea-
some [20]. We hypothesized that the decrease of Ddil
binding to proteasomes in an rpnIl-D517A mutant might
therefore result in turnover defects of substrates that are
particularly reliant on Ddil. In agreement with the normal
binding of Rad23 and Dsk2 to the proteasome in an rpni-
D517A single mutant, no defect was seen in turnover of
the Rad23/Dsk2-dependent substrate, CPY* (Figures 5A
and Additional file 5, Figure S4B) [47], or the Dsk2 sub-
strate Kre22 (Figure S4A) [48]. However, when we tested
the Ddil-dependent substrate, Ufol [49], we saw nearly
complete stabilization in comparison to a wild type strain
(Figures 5B and S4C). Note that the initial levels of plas-
mid encoded GST-Ufol were higher in rpnl-D517A
compared to ddilA cells. This was seen in two of
three replicates. We do not know the basis for this. In
agreement with the turnover data, we observed that
over-expression of GST-Ufol was toxic to ddilA and
rpnl-D517A cells but not wild type cells (Figure C). This
effect was exquisitely specific—neither rpn13A (Figure C)
nor any other mutation in rpnl that we tested (Figure 5D)
conferred sensitivity to over-expression of DST-Ufol.

Discussion

Of the three UBA-UBL shuttle receptors linked to the
proteasome, Ddil is the least studied and perhaps the
most controversial. Prior data have established that
Ddil binds polyubiquitin, albeit with lower affinity
than Rad23 and Dsk2 [16,19,24,50]. However, while
some studies report a physical interaction of Ddil with
Rpnl or the intact proteasome [14,24], there are a few
reports that question the capacity for Ddil to bind the
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Figure 4 Rpn1-D517A reduces binding of Ddi1 in vitro. GST-fused Rad23, Dsk2, Ddi1 and GST alone (as a negative control) were incubated
with either proteasomes affinity purified from rpni134 or rpn13A rpni-V447H K484A D517A (VKD) cells. The binding reactions were immobilized on
glutathione resin, which was then washed and extracted with SDS-PAGE sample buffer. An Rpt5 immunoblot (upper panel) and a commassie
stain to confirm equivalent recovery of the GST fusion proteins (middle panel) is shown. Inputs were immunoblotted with anti-Rpt5 and are also
shown (lower panel). A qualitatively similar result was obtained in two independent experiments.

proteasome or Rpnl [16,27,51]. The disparity in these
reports may be due to the qualitative nature of immu-
noprecipitation experiments and the rapid dynamics of
UBL binding to and dissociation from the proteasome
[13]. Ddil has the most divergent UBL domain among
the known UBA-UBL proteins, and hence, may have
the weakest affinity interaction with the proteasome
[27]. We have shown that Ddil is recovered with pro-
teasomes immunoprecipitated from yeast cells, binds
Rpnl in a yeast two-hybrid assay, and binds to the
proteasome in an in vitro pull-down assay. We have
further validated these results by identifying an Rpnl
mutation that is selectively defective in binding Ddil
and stabilizes the Ddil-dependent proteasome sub-
strate Ufol. Hence, we conclude that Ddil does indeed
interact with the proteasome in a specific and func-
tionally-relevant manner. If Ddil binds the proteasome
more weakly than other UBA-UBL proteins, which
seems likely, it could explain why the D517A and
K484A mutations reported here selectively disrupt
interaction of Ddil with the proteasome.

Our study highlights the layered complexity of the
interaction of shuttle proteins with the proteasome.
With a single alanine substitution in the highly con-
served D517 residue of Rpnl we were able to signifi-
cantly reduce the binding of Ddil to the proteasome.
However, the interaction of other UBA-UBL proteins

with the proteasome appears to be more complex.
Recovery of Dsk2 with proteasomes was only mildly
diminished in an rpnl1-D517A mutant that also lacked
RPN13 or the ubiquitin interaction motifs of both
RPN10 and RPN13. Meanwhile, recovery of Rad23 was
not affected appreciably by any mutation in Rpnl ana-
lyzed during the course of this work. There are two
possible explanations of these results. On the one
hand, it is possible that the domains of these proteins
have a gradient of affinity for Rpnl, with Ddil being
the weakest binder and Rad23 the strongest. In this
scenario, Rpn1-D517A may be a hypomorph that only
modestly perturbs the UBL docking site, such that
only the weakest binder (Ddil) is excluded. We
attempted to test this hypothesis by making numerous
combinatorial mutations, (including a V447H K484A
D517A triple mutant), none of which exhibited a sub-
stantially greater UBL binding defect than the D517A
or K484A alleles (Additional file 3, Table S1). Thus,
we do not favor the hypothesis that it is possible to
disrupt recruitment of Rad23 and Dsk2 by mutating a
single binding patch on Rpnl.

On the other hand, our model for UBL docking to the
proteasome suggests that it is possible that Ddil uses
only a single mechanism to bind the proteasome (direct
binding to the LRR1 domain of Rpnl), whereas, in line
with published reports [17,18], Rad23 and Dsk2 may use
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Figure 5 rpn1-D517A mutants exhibit a selective defect in protein degradation. (A) Mutant rpn1-D5717A cells degrade the Ufd1/Rad23/Dsk2
substrate CPY* with normal kinetics in a cycloheximide chase. Cycloheximide was added at time zero and samples were removed at the
indicated time points for analysis by immunoblotting. Equal loading of extracts was confirmed by blotting with an anti-tubulin antibody (lower
panel). The quantification of these blots is shown. (B) Ufo1 is stabilized in rpni-D517A and ddilA mutants. Wild type and mutant cells carrying a
plasmid that expressed GST-Ufo1 from the GAL1 promoter were grown in raffinose medium and then induced with 2% galactose for 14 h.
Dextrose was added at Ty to extinguish expression and samples were taken at the indicated time points for analysis by immunoblotting.
Quantification is shown. (C) ron1-D517A and ddilA do not tolerate over expression of Ufol. The indicated strains containing a plasmid that
expressed GST-Ufol under the control of a galactose inducible promoter were grown on medium containing either glucose (SD, expression
OFF) or galactose (SGalactose, expression ON). After two to three days, the plates were scored for growth. (D) Sensitivity of ron1-D517A to GST-

Ufo1 over-expression was specific and was not shown by other rpnT alleles.
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multiple mechanisms (including the binding site dis-
rupted by the D517A mutation) and thus are more
resistant to mutation (Figure 6). Our observation that
reduction of Dsk2 binding was only seen in an rpni-
D517A rpnl13A double mutant and more strikingly in a
rpnl-DS17A rpnl3A rpnl0O-uim supports the idea that
Dsk2 may be tethered to the proteasome by either
Rpnl, Rpnl3 or Rpnl0 (Figure 6). The failure to see a
significant reduction in binding of Rad23 in any single
or double mutant may be due to there being multiple
independent docking sites for Rad23 on the proteasome,
although it should be noted that all of these docking
sites appear to rely on the UBL domain [10,14,20,52].
Other studies have shown that Ubp6 may bind protea-
some lid proteins while Rad23 may also bind Rpt6
[36,52], and that even Ub chains bound to Rad23 may
contribute to its proteasome binding [53]. Biochemical
data suggest that human Rad23 is recruited to the pro-
teasome by the UIM domain of Rpnl0 [54,55], and that
even yeast Rad23 can bind Rpnl10 [18] but it should be
noted that this hypothesis has not been tested by genetic
manipulation of Rpnl0 in cells. Clearly, more work is
needed to unravel the mechanisms underlying

19S

Figure 6 Model for UBL protein interfacing with the
proteasome. Ddil shows a large dependence on the D517 residue
of Rpn1 for binding to the proteasome. Additionally, deleting the
intrinsic receptor Rpn13 Rpn13, or jointly the ubiquitin binding
domains of Rpn13 and Rpn10, results in decreased binding of Dsk2
to the proteasome and reveals a role for the Rpn1-K484 residue in
binding UBL proteins. However, Rad23 and the deubiquitinase Ubp6
did not show a dependence on residues D517 nor K484 of Rpn1. It
is possible that Rad23 and Ubpé6 interaction with the proteasome is
stabilized by their interactions with other proteasomal subunits and/
or other unidentified residues on Rpn1.
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recruitment of the UBL domain proteins of Rad23,
Dsk2, and Ubp6 to the proteasome.

Conclusions

The current study identifies residues in the LRR1
domain of Rpnl that contribute to shuttle receptor
docking. We validate Ddil as a proteasomal shuttle
receptor whose stable binding to the proteasome
depends on Rpnl residue D517. Consistent with this,
D517 is also important for the degradation of a Ddil-
dependent substrate. We also show that in the absence
of Rpnl3, or the dual absence of the ubiquitin binding
domains of Rpn13 and Rpnl0, mutation of the D517 or
K484 residues reduces the association of Dsk2 with the
proteasome.

Methods

Yeast strains and growth conditions

Strains used in this study are listed in Additional file 3,
Table S2. Listed strains are derivatives of the wild-type
strain RJD 360 (W303 background). Standard yeast
genetic techniques were used. Unless otherwise stated,
strains were grown at 30°C and cultured on YPD.

Plasmids

The RPNI locus including 200 bp upstream and down-
stream of the ORF was amplified by polymerase chain
reaction (PCR) from purified Saccharomyces cerevisiaege-
nomic DNA using primers TG18 (GGGCGCCTCGAGGT
TGACTATTTACAGCTCATC) and TG19 (GCGCCCGA
GCTCAGCGCATCCATATTTACT). The resulting PCR
product containing flanking Xhol and Sacl restriction sites
was digested with these enzymes and ligated into pRS315
and pRS316 CEN/ARS vectors. Silent mutations intro-
duced by site-directed mutagenesis with oligonucleotides
TG12 (gtcatttgtcaacgggttcttaaacctaggttattgtaacgataaattaat)
and TG14 (gcagatgaagaagaaacggccgaaggacagacta) resulted
in an Avrll restriction site at bp 1174 (amino acid 392)
and an Eagl site at bp 1920 (amino acid 640). Rpnl muta-
tions identified in the reverse two-hybrid screen or gener-
ated by the ‘rational” approach were introduced into this
construct by double digestion and ligation into the Avril
and Eagl sites or by site mutagenesis. pEXP-Rpn1°! *© ©%¢
was created by PCR amplification with primers TG1
(GGGGACA AGT TTG TAC AAA AAA GCA GGC
TCTATGATGAACCTAGGTTATTGTAACGATAAA)
and TG2 (GGG GAC CAC TTT GTA CAA GAA AGC
TGG GTT TTCGGCCGTTTCTTCTTCATCTGCATC)
and cloned using BP Gateway into pDONR-Express (Invi-
trogen, Carlsbad, CA, U.S.) and LR-cloned into pDEST-
AD. RAD23, DSK2, DDI1, UBP6, and RPN2 were ampli-
fied by PCR and cloned into pDONR-Express and subse-
quently LR-cloned into pDEST-AD. All plasmids used in
this study are listed in Additional file 3, Table S3
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RPN1397640 jllele library construction

Rpnl amino acids 391 to 640 were chosen as the target
area to test for forward and reverse yeast two hybrid
interactions. The pEXP-Rpn1*! * ¢** clone was used as
a template for the allele library generation. Using attB
primers TG4 (GGGGACA AGT TTG TAC AAA AAA
GCA G) and TG5 (GGGGAC CAC TTT GTA CAA
GAA AGCT), bp 1174 to 1926 were amplified by 25
cycles of PCR in 48 independent reactions, concentrated
and gel purified. Approximately 150 ng of gel-purified
product was BP-cloned into pDONR-Express and trans-
formed via electroporation into TOP10 Electro-comp
cells (Invitrogen). Plasmid DNA was collected from bac-
terial clones containing functional pENTR-Rpn13°* t© 642
clones. A yield of 500,000 clones was desired for good
library coverage and this number was exceeded.
Approximately 250 ng of purified pENTR-Rpnl allele
library DNA was LR-cloned into pDEST-DB and trans-
formed via electroporation into E. coli. Again, over
500,000 colonies were pooled and the resulting pEXP-
Rpnl allele library DNA was purified.

Forward and reverse yeast two-hybrid screen

The reverse yeast two hybrid assay was performed as
described [56]. Briefly, the pEXP-DB-Rpnl allele library
was cotransformed with pEXP-AD-Rad23 or pEXP-AD-
Dsk2 into the reporter strain MaV203 using the lithium
acetate procedure. The transformation reactions were
plated onto SC-Leu-Trp + 0.2% 5FOA. Plates were
grown for approximately one week, and putative 5SFOAR
colonies were picked and screened for reporter pheno-
types. Interaction-defective alleles were tested for lack of
activation of GALI-lacZ and failure to grow on SC-HIS
+3-amino-1,2,4-triazole (3-AT). Mild interaction-defec-
tive alleles showed some growth on 3-AT. pEXP-DB
Rpnl allele library plasmids were either purified or
amplified by PCR from yeasts colonies that displayed
5FOAR phenotypes and sequenced using primer 5-GGC
TTC AGT GGA GAC TGA TAT GCC TC-3. Clones
containing mutations were than retransformed into
MaV203 and retested for proper reporter phenotypes.
Direct PCR amplification of their pEXP-DB-Rpnl insert
was done as described [56]. Forward interactions were
tested by assaying for growth on 50 mM or 100 mM
3AT and 0.1% or 0.2% 5FOA. The plates were scored
between 24 and 72 hours.

Plasmid shuffling of rpn1 alleles

RPNI1 was replaced by Kanmx6 [57] by amplifying a cas-
sette from pFA6a-KanMX6 using oligonucleotides TG20
(GGTCTACATAAGGTGCGATTCGTATAAATTTG-
GAAGACAATTGCAAGAAACGGATCCCCGGGT-
TAATTAA) and TG21 (GGTTTTGAATTTTTCCTA
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TTCTGGTTGATATTGCCCAAAAGCTATTCAGT-
GAATTCGAGCTCGTTTAAAC). The PCR product
was transformed into a diploid W303 strain (RJD381)
creating strain RJD4166. This diploid strain was trans-
formed with pRS316-RPN1 (RDB 2090), sporulated, and
haploid segregants were selected for growth on G418
and SD-Ura. The resultant strain, RJD 4189 was used
for plasmid shuffling. Plasmids were transformed into
RJD 4189 and then transformants were selected for
growth on 5FOA-containing media.

26S proteasome native gel analysis

Native gels were prepared and run as described [58].
Briefly, 2 mL of 5x native buffer (450 mM Tris base,
450 mM boric acid, 25 mM MgCl,, 2.5 mM EDTA (pH
8)), 0.9 ml 40% acrylamide/Bis solution (37.5:1), 7 ml
H,0, 10 pl 0.5 M ATP, 90 pl 10% APS, and 9 pl
TEMED were combined and allowed to set using the
BioRad Mini-Protean Tetra gel system (Bio-Rad, Her-
cules, CA, U.S.)About 90 to 300 pg of protein supple-
mented with xylene cyanol and glycerol, was loaded per
lane. Either purified proteasomes or cell extracts were
run on native gels. Extracts were prepared as described
[59]. Gels were run at 100V for 3.5 to 4 hours with 1x
native buffer supplemented with 1 mM ATP. The gels
were then soaked in 25 mL of developing buffer
(50 mM Tris pH 7.5, 5 mM MgCl,, 1 mM ATP) fol-
lowed by a 15 minute incubation at 30°C in substrate
solution (50 mM Tris pH 7.5, 5 mM MgCl,, 1 mM
ATP, 20 uM SVC LLVY AMC, 0.02% SDS). Cleavage of
the fluorogenic substrate was visualized by exposure to
UV light using an alphaimager.

Native immunoprecipitaion of proteasomes for probing
associated UBA-UBL proteins

Native immunoprecipitations were carried out as
described [60]. Briefly, yeast cultures were grown to an
ODggo between 1 and 2 in YPD and harvested by centrifu-
gation. Pellets were washed in ice cold water and then
flash-frozen in liquid nitrogen. Thawed pellets were resus-
pended in 1 mL of Lysis Buffer (composition described
below) per 100 O.D. units. One milliliter of this lysate was
mixed with an equivalent volume of glass beads and cells
were disrupted by vortexing using the FastPrep-24 at a set-
ting of 6.5 for 60 s, cooling on ice, and then repeating.
Lysates were clarified by centrifugation at 14,000 rpm at 4°
C for 15 minutes. Clarified supernatants were bound to
anti-epitope beads for 1.5 hours at 4°C. The beads were
washed four times with lysis buffer containing detergent
(50 mM Tris, pH 7.5, 150 mM NacCl, 15% glycerol, 0.2%
Triton X-100, 25 mM b-glycerophosphate, 25 mM NEM,
1x Protase Inhibitor tablet (minus EDTA), 0.5 mM
AEBSF, 2 mM ATP, 5 mM MgCl,), and two times with
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buffer B (25 mM Tris pH 7.5, 10 mM MgCl,, 2 mM ATP).
An equal bead volume of 2x SDS buffer was added prior
to boiling for three minutes. Samples were resolved on
10% or 12.5% SDS-PAGE gels, transferred to nitrocellulose
and immunoblotted. Antibodies used in this study are
listed in Additional file 3, Table S4

Purification of 26S proteasomes for immunoblotting

A total of 26S proteasomes were purified as described [61].
Briefly, Prel-Flag (20S subunit) or Rpnl11-Flag tag contain-
ing strains were grown as large-scale cultures (2 L), and
lysed by grinding with a mortar in pestle in the presence
of liquid nitrogen. Lysates were thawed in buffer A
(50 mM Tris pH 7.5, 150 mM NacCl, 10% glycerol, 5 mM
MgCl,, 5 mM ATP), bound to anti-Flag resin (Sigma, St.
Louis, MO, U.S.), washed three times with buffer A sup-
plemented with 0.2% Triton X-100, then washed two
times with buffer B (25 mM Tris pH 7.5, 10 mM MgCl,,
2 mM ATP) prior to elution with Flag Peptide (Sigma).

Turnover of CPY*HA and GST-Ufo1

For CPY*HA turnover, pCPY*HA/URA3 containing yeast
strains were grown to an ODg, approximately 0.5, shifted
to 37°C for one hour and then treated with 100 pg/ml
cycloheximide, at which point a chase was initiated. Turn-
over of galactose-inducible Ufol was carried out as
described [49]. Briefly, cells containing pEGH-Ufol (Open
Biosystems, Huntsville, AL, U.S.)were grown overnight in
SRaffinose-URA medium and diluted the next day to an
ODggp 0.2. At an ODgg approximately 1.2% galactose was
added. Induction was for 14 hours. Cells were filtered and
washed in YP and then resuspended in YP containing 2%
dextrose. Samples were taken at intervals post dextrose
addition, centrifuged, and flash frozen. Protein was
extracted using boiling SDS-PAGE sample buffer, resolved
by SDS-PAGE, transferred to nitrocellulose and immuno-
blotted. Blots were quantified by LI-COR Odyssey with IR
dye-linked secondary antibodies (Invitrogen).

Growth assays

For plating assays strains were grown overnight in YPD
or SRaffinose-URA and diluted to an ODggo of 0.3 in
water. Serial five-fold dilutions were prepared in water
and spotted onto either YPD or minimal plates supple-
mented with various additives as described in the text.
Plates were incubated at 30°C for two to three days.

SILAC analysis of purified proteasomes

RPNI11"4 yeast strains auxotrophic for lysine and argi-
nine, were grown in either CSM with 2% dextrose contain-
ing 20 mg/L lysine and arginine or in “heavy” medium
with 20 mg/L ">C4'°N,-lysine and '*Cg-arginine. Cells
were grown to an ODggg of 2, harvested, and flash frozen
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before grinding in liquid nitrogen. Equivalent amounts of
heavy and light cells were mixed 1:1 before proceeding
with a proteasome affinity purification. Proteasomes were
eluted in 8 M urea. After purification, Lys-C (Wako Che-
micals, Richmond, VA, U.S.) was added for a four-hour
digestion, followed by an overnight tryptic digestion in
2 M urea. The tryptic peptides were desalted on a C18
macrotrap (Michrom Bioresources, Auburn, CA, U.S.) and
concentrated in a speedvac. Dried samples were resus-
pended and subject to StageTip based strong anionic
exchange (SAX) as previously described [62]. Samples
were eluted, concentrated, and then acidified with 0.2%
formic acid prior to mass spectrometric analysis. All mass
spectrometry experiments were performed on an EASY-
nLC (Thermo Scientific, Waltham, MA, U.S.) connected
to a hybrid LTQ-Orbitrap Classic (Thermo Scientific) with
a nanoelectrospray ion source (Thermo Scientific). Pep-
tides were resolved using a 240-minute gradient from 4%
to 25% acetonitrile in 0.2% formic acid at a flow rate of
350 nl per minute. The mass spectrometer was operated
in data-dependent mode to automatically switch between
full-scan MS and tandem MS acquisition. All settings
were as previously described [63]. Raw data files were ana-
lyzed by MaxQuant (v 1.0.13.13)

(MaxQuant, Matthias Mann Lab, Max Planck Institute,
Germany; http://www.maxquant.org/) [64] and searched
against the Saccharomyces Genome Database. The search
parameters included tryptic digestion, a maximum of two
missed cleavages, fixed carboxyamidomethyl modifica-
tions of cysteine, variable oxidation modifications of
methionine, variable protein N-terminus acetylations,
and a variable Gly-Gly tag on lysine residues with a 1%
FDR thresholds for both peptides and proteins. At least
two peptides were required for protein identification and
at least two different scanning events were required for
protein quantification.

In vitro UBA-UBL proteasome binding assays

GST proteins were purified using standard methods and
dialyzed into 50 mM Tris pH 7.5, 50 mM NacCl, 1 mM
DTT, 10% glycerol. For co-immunoprecipitation experi-
ments with UBA-UBL proteins and purified 26S protea-
somes, 1 pM of GST or GST-fusion protein was mixed
with 0.2 nM of 26S proteasome in the presence of IP buffer
(50 mM Tris-HCl at pH 7.5, 150 mM NaCl, 1 mM EDTA,
1 mM DTT, 0.2% triton X-100, 10% glycerol, 10 mM
MgCl,, and 5 mM ATP). The reaction was incubated with
rotation for one hour at 4°C, after which point 30 ul of glu-
tathione-sepharose beads were added to each reaction and
reactions were incubated for another hour at 4°C. Beads
were washed with 1 mL of IP buffer three times. Each sam-
ple was boiled in 2x SDS and loaded onto a 10% tris-glycine
gel. Gels were both commassie stained and immunoblotted.
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Additional file 1: Figure S1. Mutant rpnT alleles derived from both the
RY2H screen and rational mutagenesis display genetic interactions with
mutations in genes that encode ubiquitin receptors intrinsic to the
proteasome. Five-fold serial dilutions of cells were plated onto the
indicated media. The rpn1 mutants (rpn1*) were plasmid shuffled into an
rpn1A strain containing either no additional mutations (A) or rpni13A (B).
AZC refers to 5 mM of the proline analog |-azetidine-2-carboxylic acid
(AZQ). In panel B, mutations derived from the RY2H screen are indicated
with a red box.

Additional file 2: Figure S2. Analysis of Ddi1 and Dsk2 association
with proteasomes isolated from rpn1-D517A , rpni10-uim rpni1-D571A,
and rpni10-uim rpni13-KKD rpn1-D571A mutants. (A) Affinity-purified
rpon1-D517A proteasomes contain reduced levels of Ddil and Ub
conjugates. Levels of UBA-UBL proteins, the lid subunit Rpn12 and
polyubiquitin are shown for affinity purified proteasomes (IP) and in
the whole cell extract input (WCE). (B) Affinity-purified rpni10-uim rpni-
D517A proteasomes similarly show diminished association of Ddil and
Ub conjugates compared to rpni10-uim proteasomes. (C) Affinity-
purified rpn10-uim rpni3-KKD rpn1-D517A proteasomes contain
reduced levels of Ddi1, Dsk2 and Ub conjugates in comparison to
proteasomes from an rpnT10-uim rpni3-KKD strain. Densitometric
quantification of this blot is shown on the right. The amounts of UBL
proteins were normalized to Rpn11FLAG and wild type levels were set
as 100%.

Additional file 3: Table S1. Additional rational Rpn1 mutants used in
this study. Supplemental Table S2. S. cerevisiae strains used in this study.
Supplemental Table S3. Plasmids used in this study. Supplemental Table
S4. Antibodies used in this study

Additional file 4: Figure S3. Mutations at Rpn1 residues A418, N549,
F565 and G571 render unstable proteasomes Pre1-myc13 tagged
proteasomes from strains carrying plasmid borne Rpn1 alleles in an
RPNT null strain, were immunoprecipitated from whole cell extracts
and analyzed by immunoblotting with the indicated antibodies. As
shown, proteasomes with mutations at residues A418, N549, F565 and
G571 exhibit dissociation of the 19S cap with the proteasomal base
during immunoprecipitation experiments.

Additional file 5: Figure S4. rpni-D517A mutants exhibit a selective
defect in protein degradation. (A) Mutant rpni-D517A cells degrade the
Dsk2 substrate Kre22 with normal kinetics. Strains carrying a plasmid that
expressed GST-Kre22 from the GALT promoter were grown in raffinose
medium and then induced with 2% galactose for three hours. Dextrose
was added at time zero to extinguish expression and samples were
taken at the indicated time points for immunoblot analysis. Below, cells
were plated in five-fold serial dilutions onto either glucosoe or galactose
containing medium and monitored for growth after two to three days at
30°C. (B) Mutant rpn1-D5717A cells degrade the Ufd1/Rad23/Dsk2
substrate CPY* with normal kinetics in a cycloheximide chase.
Cycloheximide was added at time zero and samples were taken at the
indicated time points for immunoblot analysis. Equal loading of extracts
was confirmed by blotting with an anti-tubulin antibody (lower panel).
The quantification of these blots is shown in the right panel. This is a
replicate of the experiment shown in Figure 5A. (C) Ufo1 is stabilized in
rpn1-D517A and ddilA mutants. Wild type and mutant cells carrying a
plasmid that expressed GST-Ufo1 from the GALT promoter were grown
in raffinose medium and then induced with 2% galactose for 14 h.
Dextrose was added at TO to extinguish expression and samples were
taken at the indicated time points and analyzed by immuoblot.
Quantification is shown in the right-hand panel. This is a replicate of the
experiment shown in Figure 5B
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