
Introduction
Richard Feynman, recipient of the 1965 Nobel Prize in 
Physics, once famously stated: ‘If we were to name the 
most powerful assumption of all, which leads one on and 
on in an attempt to understand life, it is that all things are 
made of atoms, and that everything that living things do 
can be understood in terms of the jigglings and wigglings 
of atoms.’ Much of the biophysics of the last 50 years has 
been dedicated to better understanding the nature of this 
atomic jiggling and wiggling. The quantum-mechanical 
laws governing motions in the microscopic world are 
surprisingly foreign to those familiar with macroscopic 
dynamics. Motions are governed not by deterministic 
laws, but by probability functions; chemical bonds are 

formed not mechanically, but by shifting clouds of 
electrons that are simultaneously waves and particles. As 
Feynman eloquently put it, this is ‘nature as she is - 
absurd’ [1].

Understanding these absurd molecular motions is 
undoubtedly germane to drug discovery. The initial ‘lock-
and-key’ theory of ligand binding [2], in which a frozen, 
motionless receptor was thought to accommodate a small 
molecule without undergoing any conformational re
arrangements, has been largely abandoned in favor of 
binding models that account not only for conformational 
changes, but also for the random jiggling of receptors and 
ligands [3-7].

The mollusk acetylcholine binding protein (AChBP), a 
structural and functional surrogate of the human 
nicotinic acetylcholine receptor (AChR) ligand-binding 
domain [8-11], is one of countless examples that illustrate 
the importance of accounting for these atomistic motions 
(Figure  1). In crystallographic structures of small-mole
cule AChR agonists bound to AChBP, a key loop (loop C) 
partially closes around the ligand (Figure  1a,c). In con
trast, crystal structures of large AChR antagonists like 
snake α-neurotoxins bound to AChBP reveal that this 
same loop is displaced by as much as 10 Å, producing an 
active site that is far more open (Figure 1b,c) [12]. Bourne 
et al. [12] proposed that the unbound AChBP and AChR 
are highly dynamic proteins that, in the absence of a 
ligand, sample many conformational states, both open 
and closed, that are selectively stabilized by the binding 
of agonists and antagonists. Any one of these binding-
pocket conformations may be druggable and therefore 
pharmacologically relevant. If this general model of 
ligand binding is correct, the implications for structure-
based drug design are profound, as the same principle of 
binding likely applies to many other systems as well.

Molecular dynamics simulations
While crystallographic studies like these convincingly 
demonstrate the important role protein flexibility plays in 
ligand binding, the expense and extensive labor required 
to generate them have led many to seek computational 
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techniques that can predict protein motions. Unfortu
nately, the calculations required to describe the absurd 
quantum-mechanical motions and chemical reactions of 
large molecular systems are often too complex and 
computationally intensive for even the best super
computers. Molecular dynamics (MD) simulations, first 

developed in the late 1970s [13], seek to overcome this 
limitation by using simple approximations based on 
Newtonian physics to simulate atomic motions, thus 
reducing the computational complexity. The general 
process of approximation used is outlined in Figure  2. 
First, a computer model of the molecular system is 
prepared from nuclear magnetic resonance (NMR), 
crystallographic, or homology-modeling data. The forces 
acting on each of the system atoms are then estimated 
from an equation like that shown in Figure  3 [14]. In 
brief, forces arising from interactions between bonded 
and non-bonded atoms contribute. Chemical bonds and 
atomic angles are modeled using simple virtual springs, 
and dihedral angles (that is, rotations about a bond) are 
modeled using a sinusoidal function that approximates 
the energy differences between eclipsed and staggered 
conformations. Non-bonded forces arise due to van der 
Waals interactions, modeled using the Lennard-Jones 6-
12 potential [15], and charged (electrostatic) interactions, 
modeled using Coulomb’s law. For a more in-depth 
review describing how the equations describing these 
interactions are parameterized, see [14].

In order to reproduce the actual behavior of real mole
cules in motion, the energy terms described above are 
parameterized to fit quantum-mechanical calculations 
and experimental (for example, spectroscopic) data. This 
parameterization includes identifying the ideal stiffness 
and lengths of the springs that describe chemical bonding 
and atomic angles, determining the best partial atomic 
charges used for calculating electrostatic-interaction 
energies, identifying the proper van der Waals atomic 
radii, and so on. Collectively, these parameters are called 
a ‘force field’ because they describe the contributions of 
the various atomic forces that govern molecular dynamics. 

Figure 1. The different conformations of the acetylcholine 
binding protein from Lymnaea stagnalis. Portions of the protein 
have been removed to facilitate visualization. (a) The protein in a 
closed conformation with nicotine bound (PDB ID: 1UW6), shown in 
blue. (b) The protein in an open conformation (PDB ID: 1YI5) with the 
same nicotine conformation superimposed on the structure, shown 
in pink. (c) Ribbon representations of the two conformations.

Figure 2. A schematic showing how a molecular dynamics 
simulation is performed. First, a computer model of the receptor-
ligand system is prepared. An equation like that shown in Figure 3 
is used to estimate the forces acting on each of the system atoms. 
The positions of the atoms are moved according to Newton’s laws of 
motion. The simulation time is advanced, and the process is repeated 
many times. This figure was adapted from a version originally created 
by Kai Nordlund.

Initial atomic model

Calculate molecular forces acting on each atom

Move each atom according to those forces

Advance simulation time by 1 or 2 fs
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Several force fields are commonly used in molecular 
dynamics simulations, including AMBER [14,16], 
CHARMM [17], and GROMOS [18]. These differ princi
pally in the way they are parameterized but generally give 
similar results.

Once the forces acting on each of the system atoms 
have been calculated, the positions of these atoms are 
moved according to Newton’s laws of motion. The simu
lation time is then advanced, often by only 1 or 
2 quadrillionths of a second, and the process is repeated, 
typically millions of times. Because so many calculations 
are required, molecular dynamics simulations are 
typically performed on computer clusters or super
computers using dozens if not hundreds of processors in 
parallel. Many of the most popular simulation software 
packages, which often bear the same names as their 
default force fields (for example AMBER [19], CHARMM 
[17], and NAMD [20,21]), are compatible with the 
Message Passing Interface (MPI), a system of computer-
to-computer messaging that greatly facilitates the execu
tion of complex tasks by one software application on 
multiple processors operating simultaneously.

While the utility of molecular dynamics simulations 
should not be overstated, a number of studies comparing 
these simulations with experimental data have been used 
to validate the computational technique [22]. NMR data 
are particularly useful, as the many receptor and ligand 
conformations sampled by molecular dynamics 
simulations can be used to predict NMR measurements 
like spin relaxation, permitting direct comparison between 
experimental and theoretical techniques. Indeed, a 
number of studies have shown good agreement between 
computational and experimental measurements of macro
molecular dynamics [23-26].

Molecular dynamics simulations: current limitations
These successes aside, the utility of molecular dynamics 
simulations is still limited by two principal challenges 
[27]: the force fields used require further refinement, and 
high computational demands prohibit routine simula
tions greater than a microsecond in length, leading in 
many cases to an inadequate sampling of conformational 
states. As an example of these high computational 
demands, consider that a one-microsecond simulation of 
a relatively small system (approximately 25,000 atoms) 
running on 24 processors takes several months to 
complete.

Aside from challenges related to the high compu
tational demands of these simulations, the force fields 
used are also approximations of the quantum-mechanical 
reality that reigns in the atomic regime. While simu
lations can accurately predict many important molecular 
motions, these simulations are poorly suited to systems 
where quantum effects are important, for example, when 
transition metal atoms are involved in binding.

To overcome this challenge, some researchers have 
introduced quantum mechanical calculations into classic 
molecular-dynamics force fields; the motions and 
reactions of enzymatic active sites or other limited areas 
of interest are simulated according to the laws of 
quantum mechanics, and the motions of the larger sys
tem are approximated using molecular dynamics. While 
far from the computationally intractable ‘ideal’ of using 
quantum mechanics to describe the entire system, this 
hybrid technique has nevertheless been used successfully 
to study a number of systems. For example, in one recent 
simulation of Desulfovibrio desulfuricans and Clostridium 
pasteurianum [Fe-Fe] hydrogenases, a ‘QM [quantum 
mechanical] region’ was defined encompassing a 

Figure 3. An example of an equation used to approximate the atomic forces that govern molecular movement. The atomic forces that 
govern molecular movement can be divided into those caused by interactions between atoms that are chemically bonded to one another and 
those caused by interactions between atoms that are not bonded. Chemical bonds and atomic angles are modeled using simple springs, and 
dihedral angles (that is, rotations about a bond) are modeled using a sinusoidal function that approximates the energy differences between 
eclipsed and staggered conformations. Non-bonded forces arise due to van der Waals interactions, modeled using the Lennard-Jones potential, 
and charged (electrostatic) interactions, modeled using Coulomb’s law.
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metal-containing region of the protein thought to be 
catalytically important, and the remainder of the protein 
was simulated using classical molecular dynamics [28]. 
The simulations revealed an important proton transfer in 
the QM region, a bond-breaking and bond-formation 
event that could not have been modeled with a traditional 
force field. The hypothesized catalytic mechanism was 
subsequently supported by experimental evidence.

Aside from bond breaking and formation, electronic 
polarization, caused by the flow of electrons from one 
atomic nucleus to another among groups of atoms that 
are chemically bonded, is another quantum-mechanical 
effect that, with few exceptions, is generally ignored. In 
classical molecular dynamics simulations, each atom is 
assigned a fixed partial charge before the simulation 
begins. In reality, however, the electron clouds surround
ing atoms are constantly shifting according to their 
environments, so that the partial charges of atoms would 
be better represented as dynamic and responsive. Despite 
wide agreement on the importance of accounting for 
electronic polarization, after 30  years of development a 
generally accepted polarizable force field has not been 
forthcoming, and molecular dynamics simulations using 
those force fields that are available are rare [29]. 
Nevertheless, a number of polarizable force fields are 
currently under development [30], and future implemen
tations may lead to improved accuracy.

In addition to neglecting quantum-mechanical effects, 
molecular dynamics studies are also limited by the short 
time scales typically simulated. To reproduce thermo
dynamic properties and/or to fully elucidate all binding-
pocket configurations relevant to drug design, all the 
possible conformational states of the protein must be 
explored by the simulation. Unfortunately, many bio
chemical processes, including receptor conformational 
shifts relevant to drug binding, occur on time scales that 
are much longer than those amenable to simulation. With 
some important exceptions [31], simulations are currently 
limited to at most millionths of a second; indeed, most 
simulations are measured in billionths of a second.

A number of solutions to this challenge have already 
seen limited use. For example, in accelerated molecular 
dynamics (aMD) [32,33], large energy barriers are artifi
cially reduced. Though this process inevitably introduces 
some artifacts, it does allow proteins to shift between 
conformations that would not be accessible given the 
time scales of conventional molecular dynamics. These 
novel conformations can then be further studied using 
classical molecular dynamics or other techniques.

Novel hardware has also been used to overcome the 
time-scale limitations of conventional molecular dynamics 
simulations. Many of the same calculations required for 
these simulations are commonly performed by video-
game and computer-graphics applications. Consequently, 

the same graphics-processing-units (GPUs) designed to 
speed up video games can be used to speed up molecular 
dynamics simulations as well, usually by an order of 
magnitude [34-36].

Not satisfied with merely adapting molecular-dynamics 
code to run on specialized graphics processors, some 
engineers have designed new processors specifically for 
these simulations. The research group of DE Shaw is one 
notable advocate of this approach. They have built a 
supercomputer codenamed Anton capable of performing 
microseconds of simulation per day. With Anton, simula
tions longer than one millisecond [31] have successfully 
captured protein folding and unfolding as well as drug-
binding events [37]. Shortcomings certainly still exist, but 
these and other future techniques will likely make great 
progress towards overcoming current limitations on 
conformational sampling.

Molecular dynamics simulations and drug discovery
Weaknesses in current force fields and conformational 
sampling aside, molecular dynamics simulations and the 
insights they offer into protein motion often play impor
tant roles in drug discovery. Just as a single photograph of 
a runner tells little about her stride, a single protein 
conformation tells little about protein dynamics. The 
static models produced by NMR, X-ray crystallography, 
and homology modeling provide valuable insights into 
macromolecular structure, but molecular recognition 
and drug binding are very dynamic processes. When a 
small molecule like a drug (for example, a ligand) 
approaches its target (for example, a receptor) in solution, 
it encounters not a single, frozen structure, but rather a 
macromolecule in constant motion.

In some rare cases, protein motions are limited, and 
the ligand may fit into a fairly static binding pocket like a 
key fits into a lock [2]. More typically, the ligand may 
bind and stabilize only a subset of the many confor
mations sampled by its dynamic receptor, causing the 
population of all possible conformations to shift towards 
those that can best accommodate binding [4-7]. Upon 
binding, the ligand may further induce conformational 
changes that are not typically sampled when the ligand is 
absent [38]. Regardless, receptor motions clearly play an 
essential role in the binding of most small-molecule 
drugs. Several techniques have been developed to exploit 
the information about these motions that molecular 
dynamics simulations can provide.

Identifying cryptic and allosteric binding sites
NMR and X-ray crystallographic structures often reveal 
well defined binding pockets that accommodate endo
genous ligands; however, sometimes the models pro
duced by these experimental techniques obscure other 
potentially druggable sites. As these sites are not 
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immediately obvious from available structures, they are 
sometimes called cryptic binding sites.

Molecular dynamics simulations are excellent tools for 
identifying such sites [39-41]. For example, in 2004 
Schames et al. [39] performed a molecular dynamics 
simulation of HIV integrase, a drug target that had not 
seemed amenable to structure-based drug design. The 
simulations revealed a previously unidentified trench that 
was not evident from any of the available crystal struc
tures. X-ray crystallography later demonstrated that 
known inhibitors do in fact bind in this cryptic trench, as 
predicted. These results led to new experimental studies 
at Merck & Co. [42]; further development ultimately 
resulted in production of the highly effective antiretro
viral drug raltegravir, the first US Food and Drug Admin
istration-approved HIV integrase inhibitor.

Aside from cryptic binding sites, molecular dynamics 
simulations can also be used to identify druggable allo
steric sites. In one recent study, Ivetac and McCammon 
[43] performed simulations of the human β1 (β1AR) and 
β2 (β2AR) adrenergic receptors. Multiple protein confor
mations were extracted from these simulations, and the 
protein surface was computationally ‘flooded’ with small 
organic probes using FTMAP [44] to identify potential 
binding sites. Regions of the protein surface where the 
organic probes consistently congregated across multiple 
structures were then identified as potential allosteric 
sites. In all, five potential sites were identified, some of 
which were not evident in any of the existing crystal 
structures.

Improving the computational identification of 
true small-molecule binders: the relaxed complex 
scheme
One common technique used to identify the precursors 
of potential drugs in silico is virtual screening. A docking 
program is used to predict the binding pose and energy 
of a small-molecule model within a selected receptor 
binding pocket. Traditionally, many ligand models, 
typically taken from a database of compounds that can be 
easily synthesized or commercially purchased, are docked 
into a single static receptor structure, often obtained 
from NMR or X-ray crystallography. The best predicted 
ligands are subsequently tested experimentally to confirm 
binding.

Unfortunately, traditional docking relying on a single 
receptor structure is problematic. Some legitimate ligands 
may indeed bind to the single structure selected, but in 
reality most receptor binding pockets have many valid 
conformational states, any one of which may be 
druggable. In a traditional virtual screen, true ligands are 
often discarded because they in fact bind to receptor 
conformations that differ markedly from that of the 
single static structure chosen.

To better account for receptor flexibility, a new virtual-
screening protocol has been developed called the relaxed 
complex scheme (RCS) [45,46]. Rather than docking 
many compound models into a single NMR or crystal 
structure, each potential ligand is docked into multiple 
protein conformations, typically extracted from a mole
cular dynamics simulation. Thus, each ligand is asso
ciated not with a single docking score but rather with a 
whole spectrum of scores. Ligands can be ranked by a 
number of spectrum characteristics, such as the average 
score over all receptors. Thus, the RCS effectively accounts 
for the many receptor conformations sampled by the 
simulations; it has been used successfully to identify a 
number of protein inhibitors, including inhibitors of FKBP 
[47], HIV integrase [39], Trypanosoma brucei RNA edit
ing ligase 1 [48,49], T. brucei GalE [50], T. brucei FPPS 
[51], and Mycobacterium tuberculosis dTDP-6-deoxy-L-
lyxo-4-hexulose [52]. In two of these projects, the identi
fied inhibitors were effective not only against the target 
proteins, but against the whole-cell parasite [49,50].

While these successes are promising, the relaxed 
complex scheme certainly has its weaknesses. Aside from 
being based on molecular dynamics simulations that are 
themselves subject to crude force-field approximations 
and inadequate conformational sampling, the scheme 
relies on computer-docking scoring functions that of 
necessity are optimized for speed at the expense of 
accuracy. In order to facilitate high-throughput virtual 
screening, these scoring functions often treat subtle 
influences on binding energy like conformational entropy 
and solvation energy only superficially [27,53], thus 
sacrificing accuracy for the sake of greater speed.

Advanced free-energy calculations using molecular 
dynamics simulations
Though docking programs are optimized for speed rather 
than accuracy, more accurate, albeit computationally 
intensive, techniques for predicting binding affinity do 
exist. These techniques, which include thermodynamic 
integration [54], single-step perturbation [55], and free 
energy perturbation [56], are based in large part on 
molecular dynamics simulations.

Free energy is a state function, meaning that the free-
energy difference associated with a given event like a 
drug binding to its receptor is determined only by the 
energy prior to that event and the energy following it; 
while the path taken from the initial to the final state may 
influence receptor-ligand kinetics, it has no bearing on 
the free energy. Perhaps the ligand diffuses slowly 
towards the active site and slips easily into the binding 
pocket. Perhaps the protein unfolds entirely and then 
refolds around the ligand. Perhaps the ligand in solution 
is beamed to a starship in orbit, only to rematerialize in 
the active site a few seconds later. The mechanics do not 
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matter; the free energy depends only on the initial 
energy in solution and the final energy following the 
binding event.

With some notable exceptions [37], simulating a 
receptor-ligand system long enough to capture an entire 
binding event is not currently feasible. However, it is still 
possible to calculate a drug’s binding affinity using a 
technique called ‘alchemical transformation’, first described 
in 1984 [57]. This transformation is not too different from 
the starship example given above. During the course of a 
molecular dynamics simulation, the electrostatic and van 
der Waals forces produced by ligand atoms are turned 
down gradually enough to avoid undesirable artifacts. 
Eventually, the ligand is no longer able to interact with 
the protein or solvent. For all practical purposes, the 
ligand has disappeared. It does not matter that this 
transformation is not at all physical; free energy is a state 
function, so the path from the initial to the final state, 
whether real or imaginary, is irrelevant.

It is not clear, however, in what context the ligand 
should be figuratively annihilated in this way. Should a 
molecular dynamics simulation be run in which the 
bound ligand vanishes? What about the ligand in solu
tion? To address these questions, alchemical transfor
mations are selected based on the thermodynamic cycle 
shown in Figure 4. As free energy is a state function that 
depends only on the energy of the initial and final states, 
a system that proceeds from one state around this free-
energy cycle only to return to the same initial state should 
have no change in total free energy (that is, ΔGbind + 
ΔGprotein - ΔG - ΔGwater = 0). We note that ΔG in this 
equation is itself zero, since the ligand is entirely 
disappeared in both of the states shown in the bottom 
half of Figure 4, meaning the ligand cannot interact with 
the water solvent or the protein in either state. Thus, 
ΔGbind + ΔGprotein - ΔGwater = 0, and, consequently, ΔGbind = 
ΔGwater - ΔGprotein. These equations demonstrate that it is 
possible to estimate a drug’s free energy of binding, an 
indirect measurement of drug potency, by running two 
simulations, one in which the receptor-bound ligand dis
appears, and one in which the solvated ligand disappears.

A similar task, calculating relative ligand binding 
energies, is useful during drug optimization when one 
wishes to determine if a given chemical change will 
improve the potency of a candidate ligand. In this case, 
rather than annihilating the entire ligand, one section of 
the ligand is gradually transformed. For example, a key 
carbon atom might be gradually converted into an 
oxygen atom to see if the binding affinity is improved or 
diminished. These kinds of alchemical molecular dynamics 
simulations may provide medicinal chemists with useful 
insights that can guide further drug development.

A series of early fortuitous results that agreed remark
ably well with experiments led many to an enthusiasm for 

molecular-dynamics-based free-energy calculations in 
the 1980s and early 1990s that was not matched in 
subsequent decades [27,58] as computational predictions 
fell short of experimental measurements. However, 
steady algorithmic and engineering advances in recent 
years have led to renewed attention. The successful 
applications of alchemical techniques in recent years are 
legion; accurate predictions have been obtained for ligand 
binding to the src SH2 domain [59], to a mutant T4 lyso
zyme [60], to FKBP12 [61], to HIV reverse transcriptase 
[62], to trypsin [63], to a bacterial ribosome [64], and to 
estrogen receptor-α [65], among many others.

These successes aside, it is important not to oversell 
alchemical techniques. All molecular-dynamics-based 
drug-discovery techniques would benefit from improved 
force fields, but the alchemical techniques are, in 
addition, uniquely sensitive to inadequate conformational 
sampling [66]. When molecular dynamics simulations of 
insufficient length are used to identify cryptic sites, 
allosteric sites, or pharmacologically relevant binding-
pocket conformations for virtual-screening projects, the 
risk is that some suitable receptor conformations will be 
missed. The conformations that are identified, however, 
are still useful; the results of the simulation are therefore 
incomplete, but not necessarily wrong.

However, the alchemical techniques used to calculate 
free energies of binding are far more dependent on 
thorough conformational sampling than are RCS screens. 
If molecular dynamics simulations fail to sample system 
conformations that are in fact sampled ex silico, these 
conformations will not contribute to the total calculated 
energy, leading to an incorrect prediction of the binding 
affinity. Molecular dynamics simulations are compu
tationally demanding and often of necessity unacceptably 
short; insufficient conformational sampling is therefore a 
common problem that future algorithmic and hardware-
engineering efforts must address. It is largely because 
accurate predictions often require lengthy simulations 
that these alchemical techniques have not yet been widely 
adopted by the pharmaceutical industry, despite great 
interest [27].

Conclusions
In this review, we have discussed the many roles that 
molecular dynamics simulations can play in drug dis
covery, including the identification of cryptic or allosteric 
binding sites, the enhancement of traditional virtual-
screening methodologies, and the direct prediction of 
ligand binding energies. As ligand binding and the 
important macromolecular motions associated with it 
are microscopic events that take place in mere millionths 
of a second, a complete understanding of the atomistic 
energetics and mechanics of binding is unattainable using 
current experimental techniques. Molecular dynamics 
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Figure 4. The thermodynamic cycle used for selecting alchemical transformations. Typically, one wishes to calculate the free energy of 
binding, ΔGbind, shown across the top. However, it is generally impractical to run a molecular dynamics simulation long enough to capture an entire 
binding event. Instead, a series of alchemical transformations are performed using molecular dynamics simulations. ΔGprotein is the change in free 
energy that occurs when a bound ligand is ‘annihilated’. ΔG is the change in free energy that occurs when an unbound ‘ghost’ ligand binds to the 
receptor; however, since a ghost ligand is not able to interact with any solvent or receptor atoms, this energy is always zero. Finally, ΔGwater is the 
change in free energy that occurs when an unbound ligand in solution is ‘annihilated’. A system that proceeds from one state around this free-
energy cycle only to return to the same initial state should have no change in total free energy; consequently, ΔGbind = ΔGwater - ΔGprotein.

∆Gbind

∆G = 0

∆Gwater ∆Gprotein

∆Gbind + ∆Gprotein – ∆G – ∆Gwater = 0

∆Gbind + ∆Gprotein – ∆Gwater = 0

∆Gbind = ∆Gwater – ∆Gprotein
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simulations are useful for filling in the details where 
experimental methods cannot.

With constant improvements in both computer power 
and algorithm design, the future of computer-aided drug 
design is promising; molecular dynamics simulations are 
likely to play an increasingly important role in the 
development of novel pharmacological therapeutics.
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