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Bidirectional remodeling of b1-integrin adhesions
during chemotropic regulation of nerve growth
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Abstract

Background: Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the
growth cone located at the tip of extending axons. Growth cone extension requires the coordination of
cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how
chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the
inhibitory factor myelin-associated glycoprotein (MAG) triggers endocytic removal of the adhesion receptor b1-
integrin from the growth cone surface membrane to negatively remodel substrate adhesions during
chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions.

Results: We report that brain-derived neurotropic factor (BDNF) positively regulates the formation of substrate
adhesions in axonal growth cones during stimulated outgrowth and prevents removal of b1-integrin adhesions by
MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered b1-integrin clustering and induced the
dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the
formation of nascent b1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic
calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of b1-
integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced
adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to
counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of b1-
integrin adhesions and blocked the stimulation of axon extension by BDNF.

Conclusions: Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based
adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block the negative
remodeling and growth inhibitory effects of MAG. Such bidirectional remodeling may allow the growth cone to
rapidly adjust adhesiveness to the extracellular matrix as a general mechanism for governing axon extension.
Techniques for manipulating integrin internalization and activation state may be important for overcoming local
inhibitory factors after traumatic injury or neurodegenerative disease to enhance regenerative nerve growth.

Background
Neurons form targeted synaptic connections during
embryonic development of the nervous system. Dysfunc-
tion of this wiring can lead to severe neurologic disor-
ders, including schizophrenia [1], autism [2] and mental
retardation [3]. To make precise connections, neuron
cell bodies project axons that navigate the environment
to reach appropriate targets [4,5]. The axonal growth
cone guides this pathfinding by detecting multiple

diffusible and substrate bound cues; transducing gui-
dance signals; and dynamically coordinating local
responses that include rapid membrane retrieval and
insertion events, the activation of cytoskeleton-depen-
dent membrane protrusion and substrate adhesion
machinery [6-10]. Inhibition of axon outgrowth and dis-
rupted rewiring of synaptic connections underlies the
inability of the central nervous system to functionally
regenerate after injury [11,12]. The potent inhibitory
factor myelin-associated glycoprotein (MAG), which is
released after nervous system injury [13-15], was found
recently to negatively regulate growth cone adhesions
[16]. Remarkably, the growth inhibitory factors

* Correspondence: Henley.John@mayo.edu
2Department of Neurologic Surgery, Mayo Clinic: College of Medicine,
Rochester, Minnesota 55905, USA
Full list of author information is available at the end of the article

Carlstrom et al. BMC Biology 2011, 9:82
http://www.biomedcentral.com/1741-7007/9/82

© 2011 Carlstrom et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:Henley.John@mayo.edu
http://creativecommons.org/licenses/by/2.0


semaphorin 3A [17,18], Nogo-A [19,20] and chondroitin
sulfate proteoglycans [21,22] also disrupt growth cone
adhesions by distinct mechanisms. In general, the nega-
tive remodeling of adhesions by growth inhibitory cues
can occur by dismantling adhesion complexes, by deac-
tivating and internalizing integrin adhesion receptors
and by inhibiting adhesion-dependent signaling [23-26].
Integrins are type I transmembrane receptors that

function as intermediaries between extracellular matrix
components and the actin cytoskeleton [27,28]. b1-
integrin is highly expressed in motor and sensory neu-
rons during development, but levels steadily decline into
adulthood [29,30], where some expression is maintained
for synaptic plasticity and stability [31]. Accumulating
evidence indicates that integrins play an essential role in
axon outgrowth and may serve as an important target
for regenerative strategies [32-35]. Integrin receptors
function bidirectionally through ‘inside-out’ and ‘out-
side-in’ mechanisms. Rearrangement of the integrin
headpiece to a higher affinity ligand-binding state,
known as integrin activation, is referred to as ‘inside-
out’ signaling. Stimulating clustering in sphingolipid
microdomains within the plasma membrane also
increases integrin receptor avidity [36,37]. Intracellular
signaling cascades initiated through integrin-ligand
interactions refer to an ‘outside-in’ mechanism. Both
inside-out and outside-in functions are mediated
through cytoplasmic adhesion components. Integrin-
based adhesion complexes consist of membrane-cytoske-
letal and signaling proteins, such as vinculin, which acts
to couple integrin receptors to actin filaments [38,39],
talin, which induces integrin activation [40-42] and focal
adhesion kinase (FAK), which phosphorylates various
targets and regulates dynamic adhesion turnover to sti-
mulate growth cone migration [25,43,44].
Neurotrophins are target-derived secreted factors that

bind cognate Trk receptors expressed by the growth
cone to promote neuron survival, differentiation, axon
growth and synaptic plasticity [45-48]. The neurotrophin
brain-derived neurotrophic factor (BDNF) binds and
activates the receptor tyrosine kinase TrkB to control
cytoskeletal rearrangements, membrane protrusion and
growth cone motility [49-51]. How BDNF regulates
integrins and adhesion complexes in the growth cone
has remained incompletely defined [52-56]. Moreover,
BDNF showed early promise as a central neural regen-
erative agent but, to date, no effective therapy has been
developed that reliably stimulates functional recovery
after a major human central nervous system event, such
as a spinal cord injury [57-59]. Thus, elucidating the
actions of BDNF on nerve growth and adhesion regula-
tion in the combined presence of an inhibitory cue is of
great interest.

Here, we report that BDNF induces the formation of
nascent adhesion complexes in the growth cone that are
necessary for the stimulation of axon growth by BDNF,
as revealed by the sphingolipid L-t-lactosylceramide (L-
t-LacCer), an inhibitor of lipid microdomain formation
and integrin signaling, and through the use of a b1-
integrin specific function blocking antibody. Moreover,
we tested the impact of BDNF and MAG in combina-
tion, discovering that BDNF-induced adhesions are pro-
tected from disruption by secondary MAG exposure,
whereas non-clustered integrins remain susceptible to
internalization. This finding provides mechanistic insight
into a previous report that priming neurons with a neu-
rotrophin before MAG exposure restored neurite
lengths to near control levels [60]. In contrast, we found
that prior exposure to MAG prevented BDNF-induced
adhesion formation and abolished stimulated axon elon-
gation. Taken together, this work lends support to the
hypothesis that adhesion complexes are an important
target for the development of effective neural regenera-
tive therapies.

Results
BDNF induces b1-integrin clustering at the growth cone
surface
Based on previous findings that growth inhibitory fac-
tors negatively remodel growth cone adhesion com-
plexes, we hypothesized that a neurotrophin can
positively regulate the distribution of integrin receptors
at the surface plasma membrane. Immunostaining
unpermeablized Xenopus spinal neurons for surface b1-
integrin demonstrated a relatively homogeneous, diffuse
localization at the growth cone with few focal clusters of
enhanced fluorescence (Figure 1A). When neurons were
treated with BDNF (50 ng/mL) for 5 min, surface
immunostaining revealed more numerous focal clusters
of b1-integrin in the growth cone periphery, which were
often concentrated at filopodial tips (Figure 1A). Extend-
ing the duration of BDNF treatment to 20 min induced
further b1-integrin clustering, as determined by an
increased number of focal b1-integrin clusters. Quanti-
tative analysis of thresholded images (see Methods)
revealed a significant increase in the number of b1-
integrin clusters in the growth cone after BDNF treat-
ment for 5 min (two-fold) and 20 min (three-fold) com-
pared to vehicle treated controls (Figure 1B). Treatment
with BDNF for 90 min induced b1-integrin clustering
comparable to the 20-min treatment (data not shown).
We performed quality control analysis of the b1-integrin
clustering by randomly selecting 50 growth cones for
reanalysis and testing a range of threshold values includ-
ing two-, two and a half-, three- and four-fold above the
background fluorescence (see Methods). Levels of b1-
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integrin clusters increased significantly after BDNF
treatment at both 5 min and 20 min time points com-
pared to controls for each of the threshold values tested,
demonstrating the general robustness of the ordering to
the threshold value (Additional file 1). The image
thresholding at three times above background fluores-
cence likely underestimates the absolute number of
focal clusters in the growth cone, as demonstrated by
the quality control analysis, but enabled a useful and
reproducible comparison of relative changes in b1-integ-
rin clustering between treatment groups. This quantita-
tive approach also showed that the percentage of
filopodia containing at least one b1-integrin cluster
increased after BDNF treatment (Figure 1C). In contrast,
the overall surface levels of b1-integrin in the growth
cone remained unchanged after BDNF administration
(Figure 1D). Thus BDNF induces integrin clustering
rather than regulating global surface levels.

BDNF induces formation of nascent adhesions
To determine whether the b1-integrin clustering
induced by BDNF localized within adhesion complexes,
we performed double immunolabeling for both b1-
integrin and known adhesion components. Treatment
with BDNF induced b1-integrin clustering that localized
together with puncta of increased FAK fluorescence in
the growth cone periphery (Figure 2A). A similar distri-
bution of FAK has been reported previously in these
spinal neuron growth cones, consistent with its known
scaffolding and signaling functions at sites of substrate
adhesions [43,61]. The BDNF-induced integrin clusters
also labeled positive for phosphotyrosine (PY), vinculin
and talin, which are enriched in adhesion complexes. In
contrast, a-actinin, a component of mature adhesions
[62], was distinctly absent from the b1-integrin clusters.
Quantifying the percentage of b1-integrin clusters that
co-labeled for adhesion components revealed significant

Figure 1 BDNF stimulates b1-integrin clustering in the nerve growth cone. (A) Xenopus spinal neuron growth cone immunolabeled for
surface b1-integrin after treatment with vehicle alone (Control), or 5 min and 20 min BDNF (50 ng/mL) bath application. Arrowheads denote b1-
integrin clusters. Scale bar, 5 μm. (B, C) Quantification of b1-integrin clustering after 5 min and 20 min BDNF treatment expressed as mean
number of clusters per growth cone (B) and the percentage of growth cone filopodia that contain at least one b1-integrin cluster (C; see
Methods). (D) Quantification of b1-integrin surface levels in the growth cone after 5 min and 20 min BDNF treatment (see Methods). Data are
the mean ± standard error of the mean. (n > 200, n/s P > 0.05, *P < 0.01, **P < 0.001, ANOVA with Tukey’s post hoc analysis.) BDNF: brain-
derived neurotrophic factor.
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localization with FAK, phosphotyrosine, vinculin and
talin but not a-actinin (Figure 2B). The BDNF receptor
TrkB and a5-integrin were also absent from the b1-
integrin puncta (Figure 2B). Overall, this distribution
pattern is consistent with selective BDNF-induced clus-
tering of b1-integrin within nascent adhesion complexes
in the growth cone.

Disrupting b1-integrin function blocks BDNF-induced
clustering
Integrin clustering is known to occur within glycosphin-
golipid (GSL)-enriched microdomains. We tested
whether the synthetic GSL L-t-LacCer, which effectively
disrupts GSL microdomains and inhibits integrin activa-
tion and signaling at the cell surface [63], might prevent
b1-integrin clustering induced by BDNF. We first

checked that cytoplasmic calcium ion (Ca2+) signaling,
which is triggered in these spinal neuron growth cones
by BDNF [64], is unperturbed by L-t-LacCer pretreat-
ment. Live-cell Ca2+ imaging revealed an elevation of
cytoplasmic Ca2+, as detected by increased fluorescence
(> 10%) of the Ca2+-sensitive indicator Fluo-8H, after
BDNF treatment in four out of six growth cones imaged
(Figure S2A in Additional file 2). In neurons pretreated
with L-t-LacCer (20 μM; 30 min), BDNF induced a
similar Ca2+ elevation in six out of eight growth cones
imaged (Figure S2B in Additional file 2). Both the maxi-
mal fluorescence intensity increase during the recording
period and the maximal mean fluorescence intensity
increase within a 3-min bin were similar in the BDNF
alone and L-t-LacCer plus BDNF treatment groups (Fig-
ure S2C, D in Additional file 2). Thus, Ca2+ signals

Figure 2 BDNF triggers the formation of nascent growth cone adhesions. (A) Representative confocal images of dual immunolabeled
growth cones showing b1-integrin (red) and known cytoplasmic adhesion components (green: FAK; PY; vinculin; talin; a-actinin) after BDNF
treatment (50 ng/mL; 20 min). Arrowheads in the merged images denote spots of co-localization. Scale bar, 5 μm. (B) Quantification of the
percentage of total immunostaining for adhesion components, a5-integrin, and TrkB receptors that overlapped with b1-integrin clusters. Data
are the mean ± standard error of the mean. (n > 40, n/s P > 0.05, **P < 0.001, ANOVA with Tukey’s post hoc analysis.) BDNF: brain-derived
neurotrophic factor; FAK: focal adhesion kinase; PY: phosphotyrosine.
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downstream of BDNF treatment appear relatively nor-
mal in the growth cone after L-t-LacCer pretreatment.
In contrast, pretreatment with L-t-LacCer reduced the
surface b1-integrin clustering in the growth cone com-
pared with vehicle treated controls and prevented clus-
tering after a subsequent BDNF treatment (20 min;
Figure 3A, B, D). The global surface levels of both b1-
integrin and TrkB remained unchanged after treatment
with L-t-LacCer compared to vehicle treated controls
(Additional files 3 and 4).

We further addressed whether integrin function was
necessary for b1-integrin clustering by utilizing the spe-
cific b1-integrin function-blocking antibody 2999 [65].
Pretreatment with antibody 2999 (5 μg/mL; 20 min)
reduced the surface b1-integrin clustering in the growth
cone compared to vehicle treated controls and pre-
vented BDNF-stimulated b1-integrin clustering (Figure
3A, C, D). Total surface levels of both b1-integrin and
TrkB were unchanged after treatment with antibody
2999 compared to vehicle treated controls (Additional

Figure 3 BDNF-induced b1-integrin clustering requires intact lipid microenvironments and functional b1-integrin. (A) Representative
immunolabeled images showing b1-integrin after vehicle (BSA), BDNF (50 ng/mL; 20 min), (B) L-t-LacCer (20 μM) and L-t-LacCer plus BDNF, and
(C) b1-integrin function blocking antibody (Fxn Blk Ab, 5 μg/mL) alone and plus BDNF treatments. Arrowheads designate clustered b1-integrins.
Scale bar, 5 μm. (D) Quantification of b1-integrin clustering according to the treatment groups. Data are the mean ± standard error of the mean.
(n > 150, **P < 0.001, ANOVA with Tukey’s post hoc analysis.) BDNF: brain-derived neurotrophic factor; BSA: bovine serum albumin; L-t-LacCer: b-
D-lactosyl-N-octanoyl-L-threo-sphingosine.
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files 3 and 4). Taken together, these findings support the
notion that disrupting b1-integrin function blocks
BDNF-dependent integrin clustering.
Is integrin clustering necessary for neurotrophin sti-

mulation of neurite outgrowth? We addressed this by
performing functional live-cell growth assays. Acute
treatment with BDNF stimulated axon elongation during
the 60-min assay as compared to vehicle treated con-
trols (Figure 4A, B). Pretreatment with L-t-LacCer to
disrupt integrin clustering before the growth assay
reduced axon elongation compared with vehicle treated
controls and impaired the BDNF-induced stimulation of
outgrowth (Figure 4A, B). In contrast, pretreatment with
the natural stereoisomer D-lactosyl-b1-1’-N-octanoyl-D-
erythro-sphingosine (D-e-LacCer) permitted both normal
basal outgrowth and the stimulation of outgrowth after
a subsequent BDNF treatment (Figure 4B). Pretreatment
with b1-integrin function-blocking antibody 2999 to
prevent integrin clustering also impaired BDNF-stimu-
lated axon elongation, whereas pretreatment with a con-
trol antibody permitted normal BDNF-dependent axon
extension (Figure 4B). Altogether, these findings suggest
that integrin clustering and activation are necessary for
the stimulation of axon outgrowth by a neurotrophin.
We next tested whether treatment with either L-t-Lac-

Cer or the function-blocking antibody might impair
growth cone membrane expansion, a stereotyped func-
tional response to BDNF administration [66]. Molecular
expression of a GFP-tagged chimera of paxillin, a cyto-
plasmic component of growth cone adhesions [67],
demonstrated significant membrane expansion after
BDNF treatment, as visualized by total internal reflec-
tion fluorescence (TIRF) microscopy to permit imaging
exclusively at the ventral membrane contacting the sub-
strate (Additional file 5). We also noted the rapid for-
mation of numerous GFP-paxillin puncta consistent
with nascent adhesions after BDNF treatment (Addi-
tional file 5). Measurements of growth cone diameter
(see Methods) demonstrated that BDNF treatment
caused significant widening of the growth cone com-
pared with the pretreatment diameter (Figure S5A, B in
Additional file 6). Significantly, neither the L-t-LacCer
pretreatment nor the function-blocking antibody 2999
impaired the BDNF-induced growth cone expansion
(Figure S5A, B in Additional file 6). Thus, both L-t-Lac-
Cer and the function-blocking antibody 2999 block
BDNF-induced b1-integrin clustering and stimulation of
axon outgrowth without disrupting BDNF signaling and
downstream membrane expansion.

BDNF-induced b1-integrin clustering is Ca2+-dependent
Cytoplasmic Ca2+ is an important second messenger for
axon guidance signaling and is essential for positive
growth cone chemotaxis towards a point source of

Figure 4 Disrupting b1-integrin clustering impedes BDNF-
dependent axon outgrowth. (A) Axon growth assays with BDNF
(50 ng/mL) or L-t-LacCer (20 μM) plus BDNF treatments
demonstrating representative growth rates during a 60-min period.
Scale bar, 10 μm. (B) Quantification of the axon growth rates of
vehicle (BSA), BDNF, L-t-LacCer alone, L-t-LacCer plus BDNF, D-e-
LacCer (20 μM), D-e-LacCer plus BDNF, b1-integrin function blocking
antibody 2999 (Fxn Blk Ab; 5 μg/mL) alone and plus BDNF, control
antibody (Control Ab, 5 μg/mL) and Control Ab plus BDNF
treatments. Data are the mean ± standard error of the mean. (n >
150, **p < 0.001, ANOVA with Tukey’s post hoc analysis). BDNF:
brain-derived neurotrophic factor; BSA: bovine serum albumin; D-e-
LacCer: D-lactosyl-b1-1’-N-octanoyl-D-erythro-sphingosine; L-t-LacCer:
b-D-lactosyl-N-octanoyl-L-threo-sphingosine.
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BDNF in these spinal neurons [9,68]. To determine the
role of Ca2+ signaling during b1-integrin clustering by
BDNF, we utilized the cell-permeant chelator BAPTA-
AM, which effectively buffers cytoplasmic Ca2+. Surface
immunolabeling revealed that pretreatment with
BAPTA-AM completely blocked b1-integrin clustering
induced by BDNF (Figure 5A, B). Pretreatment with 50
μM cadmium chloride (CdCl2) to nonselectively block

voltage-dependent plasmalemmal Ca2+ channels [69,70]
also abolished the b1-integrin clustering induced by
BDNF (Figure 5B). When spinal neurons were pre-
treated with BAPTA-AM during functional live-cell
growth assays, the rate of constitutive axon elongation
was reduced compared with normal Ca2+ controls (Fig-
ure 5C). Importantly, BAPTA-AM treatment completely
abolished the BDNF-stimulated growth rate compared

Figure 5 BDNF-induced b1-integrin clustering and stimulated axon outgrowth is Ca2+-dependent. (A) Representative immunolabeled
growth cones showing the distribution of surface b1-integrin after treatments with vehicle (BSA), BDNF (50 ng/mL), or BAPTA-AM (1 μM; 30 nM
[Ca2+]e) plus BDNF. Arrowheads denote b1-integrin clustering. Scale bar, 5 μm. (B) Quantification of b1-integrin clustering according to
treatments with vehicle (BSA), BDNF (50 ng/mL), BAPTA-AM (1 μM; 30 nM [Ca2+]e) alone, BAPTA-AM (1 μM; 30 nM [Ca2+]e) plus BDNF, CdCl2 (50
μM; 20 min) alone, and CdCl2 plus BDNF. (C) Quantification of the mean axon growth rate after treatments with vehicle (BSA), BDNF (50 ng/mL),
BAPTA-AM (1 μM; 30 nM [Ca2+]e), and BAPTA-AM (1 μM; 30 nM [Ca2+]e) plus BDNF. Data are the mean ± standard error of the mean. (n > 100,
*P < 0.05, **P < 0.001, ANOVA with Tukey’s post hoc analysis.) BDNF: brain-derived neurotrophic factor; BSA: bovine serum albumin; [Ca2+]e:
extracellular Ca2+ concentration.
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to normal Ca2+ controls. Taken together, these findings
demonstrate that both b1-integrin clustering and stimu-
lation of axon outgrowth by BDNF require intracellular
Ca2+ signaling.

BDNF-induced b1-integrin adhesions resist
downregulation by MAG
We next tested whether the positive regulation of b1-
integrin adhesions by BDNF might counteract negative
remodeling by MAG. In growth cones exposed to MAG
(1 μg/mL), surface immunostaining and quantitative
analysis after image thresholding revealed a complete
loss of clustered b1-integrin compared to vehicle treated
controls (Figures 6A, B and 7). In contrast, pretreatment
with BDNF (50 ng/mL) induced the formation of b1-
integrin clusters that persisted even after a subsequent
MAG exposure (Figures 6A, B and 7). We next asked
whether BDNF might induce integrin clustering in the
presence of MAG. In growth cones first exposed to
MAG followed by a subsequent BDNF treatment, the
b1-integrin clustering was abolished unlike the vehicle
treated controls (Figures 6A, B and 7). Thus, BDNF
priming induces b1-integrin clustering that can resist
negative remodeling by MAG exposure, but secondary
BDNF treatment cannot overcome the MAG-induced
loss of clustering. Quality control analysis of the b1-
integrin clustering using a range of threshold values
including two-, two and a half-, three- and four-fold
above the background fluorescence (see Methods),
demonstrated statistical reliability for every data set
except two experimental conditions that were analyzed
with a threshold value four-fold above background
fluorescence (Additional file 7).
Quantifying the mean surface b1-integrin immunos-

taining showed a reduction in global surface levels after
MAG exposure alone compared with vehicle treated
controls (Figures 6C and 7). Pretreatment with BDNF
followed by MAG exposure partially protected the glo-
bal surface levels of b1-integrin, which were elevated
compared with MAG exposure alone, but were reduced
compared with BDNF treatment alone (Figures 6C and
7). In growth cones first exposed to MAG followed by a
subsequent BDNF treatment, the global surface levels of
b1-integrin were reduced by levels comparable to those
after MAG exposure alone (Figure 6C and 7). Alto-
gether, these results suggest that the initial exposure to
a positive or negative chemotropic cue may determine
the level of b1-integrin clustering in the growth cone.
Moreover, the mechanisms regulating integrin clustering
can be distinct from those controlling the global level at
the growth cone surface membrane.
Does the level of integrin clustering regulate axon

extension? Pretreating rat cerebellar and dorsal root
ganglion neurons with BDNF before plating onto MAG-

expressing cells has been shown to block the growth
inhibitory effects of chronic exposure to MAG in a 24-
hour growth assay [60]. We tested for a correlation
between the rate of axon extension and the direction of
adhesion remodeling in the growth cone during acute
exposure to MAG and BDNF. Treatment with BDNF
stimulated the rate of axon extension during the 60-min
functional assay, whereas single exposure to MAG-alone
inhibited outgrowth compared to vehicle treated con-
trols (Figures 6D and 7). In dual exposure assays, pre-
treatment with BDNF followed by MAG application
resulted in a restoration of control levels of axon growth
(Figures 6D and 7). On the other hand, initial MAG
exposure followed by BDNF led to a relatively modest
improvement in outgrowth over MAG treatment alone
and was significantly reduced compared to control levels
(Figures 6D and 7). Thus, the MAG-induced inhibition
of axon extension correlates with negative b1-integrin
clustering and reduced surface levels, and restoration of
basal growth rate correlates with positive b1-integrin
clustering and maintained surface levels. Stimulated out-
growth by BDNF may require both b1-integrin cluster-
ing and the complete protection of normal surface
levels.

Discussion
Positive regulation of growth cone adhesions by BDNF
In a previous report, we demonstrated that a soluble
form of MAG directs b1-integrin internalization to
negatively modulate the functional distribution of integ-
rin adhesions in the growth cone during repulsive gui-
dance. Here, we have expanded on these findings by
revealing that the neurotrophin BDNF positively regu-
lates the formation of nascent integrin adhesions in the
growth cone. The BDNF-induced clustering of b1-integ-
rin localized to sites of substrate adhesions that co-
labeled with bona fide adhesion components, including
FAK, vinculin, phosphotyrosine and talin. The b1-integ-
rin clustering was rapid, occurring during a 5-min
BDNF treatment. Interestingly, the newly formed adhe-
sions were negative for a-actinin, a component of more
mature stable adhesion complexes, even after a 20-min
BDNF treatment. These results are consistent with the
notion that BDNF may stimulate both the formation
and turnover of nascent adhesions, since stabile adhe-
sions persisting for longer than 15 min would be
expected to recruit a-actinin. Our finding, that b1-integ-
rin clustering reached a new steady state during a 20-
min BDNF treatment without any further increase after
a 90-min treatment, further supports this idea. However,
an alternative interpretation is that BDNF induces the
formation of a distinct subclass of integrin adhesions in
the growth cone that are a-actinin negative. While this
manuscript was in review, a complementary finding was
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Figure 6 BDNF priming counteracts inhibitory MAG-effects on b1-integrin clustering and growth inhibition. (A) Representative
immunolabeled images showing b1-integrin after control (BSA), MAG (1 μg/mL; 5 min), or combination treatments with BDNF (50 ng/mL; 20
min) and MAG. Detailed time course graphical representation of the combination treatments located in Additional file 8. Arrowheads designate
clustered b1-integrins. Scale bar, 5 μm. (B) Quantification of b1-integrin clustering after vehicle (BSA), BDNF (50 ng/mL), and MAG (1 μg/mL)
treatments alone or followed by secondary exposure to BDNF or MAG. (C) Quantification of b1-integrin surface levels after vehicle (BSA), BDNF
(50 ng/mL), and MAG (1 μg/mL) treatments alone or followed by secondary exposure to BDNF or MAG. (D) Quantification of the mean axon
growth rate according to the treatment groups. Data are the mean ± standard error of the mean. (n > 150, *P < 0.01, **P < 0.001, ANOVA with
Tukey’s post hoc analysis.) BDNF: brain-derived neurotrophic factor; BSA: bovine serum albumin; MAG: myelin-associated glycoprotein.
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reported, that BDNF stimulates FAK-dependent forma-
tion and turnover of paxillin-containing substrate point
contacts in the axonal growth cone during chemoattrac-
tive guidance [71]. This provided independent validation
that BDNF induces nascent adhesions.
The BDNF-induced clustering of b1-integrin and sti-

mulation of axon growth both required elevation of
cytoplasmic Ca2+, a key second messenger downstream
of TrkB activation, and functional lipid microdomains in
the surface plasma membrane. How might local Ca2+

signals facilitate integrin clustering and adhesion forma-
tion? It is well established that a rise in cytoplasmic Ca2
+ ([Ca2+]i) leads to Ca2+/calmodulin-dependent protein
kinases II (CamKII) activation [72,73]. One possibility is
that CamKII activity positively regulates Tiam1 [74,75],
Ras-GRF1/2 [76] and other guanine exchange factors to
mediate Rho-family guanosine triphosphatase-dependent
cytoskeletal dynamics and adhesion assembly [67,77].
An increase in [Ca2+]i has also been shown to trigger
protein kinase C-mediated phosphorylation of Rho-gua-
nosine nucleotide dissociation inhibitor, which then sti-
mulates Rac localization to the plasma membrane [78].
Alternatively, [Ca2+]i elevation may initiate synaptotag-
min I-mediated vesicular trafficking of adhesion recep-
tors and components to focal sites at the plasma
membrane, leading to increased adhesion formation and
outgrowth [79]. Elucidating the signaling cascade
initiated by BDNF that mediates integrin-based adhesion
formation will be an important area of future
investigation.
Many groups have now reported that the non-arbi-

trary, asymmetrically distributed lipids, including choles-
terol and sphingolipids, influence integrin adhesion and
signaling functions [36,80]. Specifically, the glycosphin-
golipid GM3 has been shown to directly regulate

integrin-substrate interactions [81]. Additionally, talin
and vinculin contain lipid binding sites that are thought
to regulate adhesion formation and turnover [82]. Pre-
vious reports demonstrated that the synthetic GSL L-t-
LacCer incorporates into the surface plasma membrane,
disrupting lipid microdomains, integrin clustering and
subsequent integrin activation [63]. Our finding, that L-
t-LacCer disrupted b1-integrin clustering in the growth
cone and attenuated the basal rate of axon outgrowth, is
consistent with an essential role for the lipid microen-
vironment in normal integrin adhesion and signaling
functions. This effect was more pronounced in the pre-
sence of BDNF, when L-t-LacCer pretreatment comple-
tely blocked b1-integrin clustering and prevented
stimulation of axon extension. Our complementary
results with the function-blocking antibody provide
further support for the notion that BDNF-induced clus-
tering of b1-integrin is essential for stimulated axon out-
growth. Altogether, our findings support a model
whereby Ca2+-dependent signaling downstream of
BDNF binding and TrkB activation induces the rapid
clustering and formation of nascent b1-integrin adhe-
sions in the growth cone to stimulate axon growth rate.
Such dynamic remodeling may allow the growth cone to
rapidly adjust adhesiveness to the extracellular matrix,
providing a general mechanism for governing axon
extension.

Chemotropic effects determined by diametric regulation
of growth cone adhesions
We showed previously that a diffusible microscopic gra-
dient of MAG remodels growth cone adhesions asym-
metrically during repulsive chemotactic guidance. Here,
we have shown that the rapid global downregulation of
functional b1-integrin adhesions at the growth cone

Figure 7 Comparison of bidirectional b1-integrin remodeling during nerve growth. Summary figure showing the clustering and global
surface levels of b1-integrin in the growth cone correlated with the mean axon growth rate for the experimental treatments in Figure 6.
Superscripts denote order of treatment. Symbols (+/-) denote positive and negative effects relative to controls.
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surface membrane, induced by uniform exposure to
MAG, correlates with the inhibition of axon extension
in a similar time frame. The mechanism is Ca2+-depen-
dent but distinct from the action of BDNF, since MAG
triggers removal of b1-integrin from the surface mem-
brane whereas total surface levels of b1-integrin remain
unchanged by BDNF treatment. Thus, BDNF and MAG
remodel growth cone adhesions in opposite directions
during stimulation and inhibition of axon outgrowth,
respectively. Importantly, the microenvironment of
growth cone adhesions induced by BDNF protected
against MAG-disruption and b1-integrin internalization.
This BDNF priming did not block MAG-induced inter-
nalization of non-clustered b1-integrin, suggesting that
the priming effect occurred by a mechanism other than
cross-desensitization of receptors or second messengers.
Internalization of the non-clustered integrin pool may
partially account for the failure of BDNF priming to
maximally stimulate nerve growth when MAG is
present.
Treatment with BDNF after MAG application pre-

cludes adhesion formation and may provide a partial
explanation for the relative lack of efficacy BDNF
showed in human spinal cord regenerative efforts. We
found that secondary BDNF treatment after MAG pre-
exposure caused only a relatively modest improvement
in the growth rate compared with MAG exposure alone,
and was significantly attenuated compared with the con-
trol unperturbed growth rate. Neurotrophins can stimu-
late many cellular processes that are key for axon
outgrowth. These include sprouting of new filopodia
and membrane expansion at the growth cone, regulating
actin dynamics and microtubule elongation, in addition
to the formation of nascent substrate adhesions. Expo-
sure to MAG may suppress many, but not necessarily
all, of these actions. Taken together, our findings pro-
vide additional rationale for future studies aimed at
manipulating the regulation of adhesion complexes in a
translational regenerative model. We speculate that
manipulations to disrupt the cycle of b1-integrin surface
removal by MAG, such as inhibiting clathrin-mediated
endocytosis or stimulating integrin activation and recep-
tor redistribution, may potentially allow nerve growth
stimulating agents like BDNF to positively regulate
growth cone adhesions and encourage outgrowth
through an inhibitory environment.

Conclusions
This study demonstrates that the neurotrophin-induced
formation of integrin-based adhesions in the growth
cone, which is Ca2+-dependent, requires the clustering
and activation of b1-integrin, and correlates with the sti-
mulation of axon growth rate. This positive remodeling
of integrin adhesions by BDNF opposes the negative

remodeling induced by MAG during the inhibition of
axon extension. Moreover, the BDNF-induced integrin
clustering is resistant to negative remodeling by MAG,
revealing a potential mechanism to explain how BDNF
can block the growth inhibitory effects of MAG. Future
therapeutic strategies targeted to manipulate dynamic
integrin remodeling and activation state may be impor-
tant for overcoming local inhibitory factors after trau-
matic injury or neurodegenerative disease to enhance
neural regeneration.

Methods
Ethics statement
All animal experiments were carried out with strict
adherence to National Institutes of Health (NIH) Guide-
lines for animal care and safety and were approved by
the Mayo Clinic Institutional Animal Care and Use
Committee.

Primary cell culture of Xenopus spinal neurons
Wild-type Xenopus laevis (Xenopus One) were main-
tained in approved animal facilities according to institu-
tional guidelines. Experiments were conducted on spinal
neurons prepared from neural tube dissections of one-
day old (stage 22) X. laevis embryos [83]. These cultures
are used for experiments 10 h to 14 h after plating on
fibronectin substrate at 20°C to 22°C. All cover glasses
were coated with poly-D-lysine (5 mg/mL, Sigma, St.
Louis, MO, USA) followed by fibronectin (20 μg/mL,
Sigma). Culture medium consisted of 87.5% (v/v) Leibo-
vitz medium (GIBCO, Grand Island, NY, USA) contain-
ing 0.4% (v/v) fetal bovine serum (HyClone, Logan, UT,
USA), and 12.5% (v/v) saline solution (10 mM D-glu-
cose, 5 sodium pyruvate, 1.26 mM calcium chloride
(CaCl2) and 32 mM HEPES; pH 7.5). Experiments were
performed in modified Ringers solution (120 mM
sodium chloride (NaCl), 2.2 mM potassium chloride
(KCl), 2 mM CaCl2, 1 mM magnesium chloride
(MgCl2), 5 mM HEPES, 2 mM sodium pyruvate; pH
7.6). All animal research was performed with the
approval of Mayo Clinic Institutional Animal Care and
Use Committee.

Reagents, immunolabeling and microscopy
Spinal neuron cultures were treated with MAG-Fc (1
μg/mL, R&D Systems #538-M, Minneapolis, MN, USA;
conjugated to Fc-specific goat anti-human immunoglo-
bulin G, Jackson IR Labs 109-485-098, West Grove, PA,
USA), BDNF (50 ng/mL, Peprotech #450-02, Rocky Hill,
NJ, USA), both or a control BSA vehicle solution for
predetermined times, followed by standard chemical
fixation. MAG treatments for 5 min were utilized to
obtain maximal integrin surface removal [16]. Spinal
neuron cultures were chemically fixed in a cytoskeleton-

Carlstrom et al. BMC Biology 2011, 9:82
http://www.biomedcentral.com/1741-7007/9/82

Page 11 of 15



stabilizing buffer containing 2.5% paraformaldehyde and
0.01% glutaraldehyde for 20 min. All blocking and
immunolabeling steps were performed in modified Ring-
ers solution containing 5% goat serum. Alexa-dye-
labeled secondary antibody conjugates (Invitrogen,
Carlsbad, CA, USA) were used at 2 μg/mL. We immu-
nolabeled unpermeabilized cells using a monoclonal
antibody to the extracellular domain of b1-integrin (8c8-
c, 0.8 μg/mL, University of Iowa Developmental Studies
Hybridoma Bank) or with a b1-integrin function-block-
ing antibody (2999, 0.4 μg/mL, K. Yamada) along with a
polyclonal anti-b-tubulin antibody (0.4 μg/mL, Abcam
ab15568, Cambridge, England). Antibody staining for
vinculin (2 μg/mL, Sigma V931), FAK (2 μg/mL, Santa
Cruz Biotechnology sc-557, Santa Cruz, CA, USA),
phosphotyrosine p-Tyr PY99 (1 μg/mL, Santa Cruz Bio-
Technology sc-7020), a5-integrin (1 μg/mL, D. DeSi-
mone), TrkB (4 μg/mL, Novus NB100-92063, Littleton,
CO, USA), a-actinin (1 μg/mL, Santa Cruz Biotechnol-
ogy sc-59953) and talin (0.8 μg/mL, Abcam ab1188) was
performed on permeabilized cells (0.1% Triton-X-100),
followed by Alexa555 secondary antibody conjugates.
Fluorescence microscopy was performed using a Zeiss
(Jena, Germany) LSM 5LIVE confocal microscope
equipped with a 63 × oil immersion objective (1.4
numerical aperture, 1.6 × optical zoom) with identical
acquisition settings for control and experimental groups.
The paxillin-GFP construct was provided by T.M.
Gomez (University of Wisconsin, Madison). GFP-paxil-
lin RNA was injected into four-celled Xenopus embryos.
Spinal neurons were plated onto laminin (80 μg/mL)
and incubated for 3 h to 4 h at 23°C to 25°C before use.
High-magnification images were acquired using a Zeiss
AxioCam MRm and 100 ×/1.45 NA objective on a Zeiss
TIRF microscope.

Image analysis and processing
To measure only receptors at the plasma membrane,
permeabilized growth cones were excluded inadvertently
from the analysis, as identified by tubulin immunofluor-
escence with polyclonal anti-b-tubulin. The original 14-
bit images were analyzed using ImageJ (Bio-Formats
ZVI plug-in, Madison, WI, USA). A region of interest
encompassing the entire growth cone (defined as the
distal 20 μm) was used to determine the mean fluores-
cence intensity of thresholded images (identical for
experimental and control conditions). Data were back-
ground subtracted and normalized to the appropriate
control images. Growth cones with a mean b1-integrin
fluorescence level less than double the background
fluorescence were excluded from analysis. For quantifi-
cation of integrin clustering, we used a three-fold fluor-
escence inclusion criterion of b1-integrin cluster
intensity over the mean background fluorescence in the

growth cone central domain. Only clusters within the
distal 20 μm of the axon and within 5 μm of the lateral
borders of the growth cone (growth cone peripheral
domain) were included. Quantification of b1-integrin
clustering for quality control analysis was performed by
randomly selecting growth cones (n = 50) for reevalua-
tion with a range of fluorescence threshold values (two-,
two and a half-, three-, and four-fold above the back-
ground fluorescence) [84]. To quantify co-labeling with
b1-integrin puncta, a two-fold fluorescence increase
relative to the mean fluorescence in the growth cone
central domain was utilized for identifying cytoplasmic
protein clusters. The growth cone diameter was deter-
mined using ImageJ by measuring from the lateral edges
of lamellipodia at the widest point of the growth cone,
excluding filopodia. The GFP-paxillin TIRF microscopy
movie was made using ImageJ software by exporting
time-lapse stacks to a QuickTime format (MOV,
MPEG4 compression, 3 frames per second).

Manipulation of b1-integrin clustering
We disrupted BDNF-induced integrin clustering using a
30-min pretreatment with the glycosphingolipid L-t-Lac-
Cer: b-D-lactosyl-N-octanoyl-L-threo-sphingosine (20
μM, Avanti Polar Lipids, Alabaster, AL, USA). The nat-
ural stereoisomer D-e-LacCer: D-lactosyl-b1-1’-N-octa-
noyl-D-erythro-sphingosine (20 μM, Avanti Polar
Lipids) was used as a control lipid. Both L-t-LacCer and
D-e-LacCer were complexed to defatted BSA and incu-
bated with cells at a final concentration of 20 μM [63].
Integrin function was inhibited by a 20-min pretreat-
ment with the function-blocking antibody 2999 (5 μg/
mL). To buffer intracellular Ca2+, neuron cultures were
incubated for 30 min in low-Ca2+ (30 nM) solution con-
sisting of 50% culture medium and 50% ethylene glycol
tetraacetic acid (EGTA)-buffered saline (120 NaCl mM,
4.9 KCl mM, 1.55 mM MgCl2, 1.25 mM glucose, 5 mM
sodium pyruvate, 4 mM HEPES, 0.65 mM EGTA, pH
7.6) and BAPTA-AM (1,2-bis-(o-aminophenoxy)-ethane-
N, N, N’, N’-tetraacetic acid, tetraacetoxymethyl ester, 1
μM; Calbiochem, Gibbstown, NJ, USA) or dimethyl sulf-
oxide vehicle for 30 min, followed by consecutive
washes in low-Ca2+ saline. To broadly disrupt Ca2+

influx via voltage-dependent Ca2+ channels in the plas-
malemma, neurons were pretreated for 20 min with
CdCl2 (50 μM, Sigma) as reported previously [70].

Live-cell Ca2+ imaging
X. laevis spinal neurons were loaded with the fluores-
cence Ca2+ sensor Fluo-8H (2 μM, 30-min loading in
culture medium containing 0.01% pluronic acid, AAT
Bioquest, Sunnyvale, CA, USA). Growth cones were sub-
jected to Ca2+ imaging within 45 min of dye loading,
using a Zeiss 200 M inverted microscope equipped with
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a 100X/1.45 NA objective and EM-CCD camera (Hama-
matsu, Bridgewater, NJ, USA). Image acquisition was
every 15 s and was started at least 2 min prior to appli-
cation of BDNF (50 ng/mL). To measure fluorescence
intensity, each series of images was thresholded to elimi-
nate background noise, and the mean fluorescence
intensity within a region of interest drawn around the
growth cone was measured using ImageJ software
(NIH). For each growth cone, the mean fluorescence
intensity of each image after BDNF treatment (F) was
then compared to the mean baseline fluorescence (pre-
BDNF treatment; F0) to obtain the displayed value of
normalized fluorescence (F/F0).

Functional axon outgrowth assay
For measurements of neurite outgrowth in response to
the various treatment groups, a series of time-lapse
images were taken to record growth over a 60-min per-
iod (ProgRes CapturePro 2.7, Jenoptik Inc., Jupiter, FL,
USA). Neurons were pretreated with L-t-LacCer or D-e-
LacCer for 30 min in appropriate assays. A 20-min pre-
treatment was used for outgrowth assays with the func-
tion blocking antibody 2999 and a control antibody. All
outgrowth assays were performed on a Zeiss 40 compact
fluorescent lamp microscope equipped with a Ludl Elec-
tronic Products (Hawthorne, NY, USA) BioPoint 2
motorized stage, cooled charged-coupled device camera
and a 20 × objective. Only axons > 50 μm in length
were included in the analysis. Analysis was conducted
using ImageJ.

Statistical analyses
All statistical analyses were performed using GraphPad
Prism software (v5, La Jolla, CA, USA). The figure
legends state the statistical tests used. Data with a nor-
mal distribution (D’Agostino and Pearson omnibus nor-
mality test) were assessed using repeated-measures one-
way analysis of variance with a Tukey post hoc analysis.

Additional material

Additional file 1: Figure S1-Quality control analysis of b1-integrin
clustering after time course BDNF treatments. Growth cones from
each experimental group in Figure 1B were randomly selected for
quantification of b1-integrin clustering reanalysis (Research Randomizer V.
3.0 software), using a range of fluorescence threshold values (two-, two
and a half-, three- and four-fold above the background fluorescence).
Data are the mean ± s.e.m. (n = 50, *P < 0.05 as compared to control,
ANOVA with Tukey’s post hoc analysis.)

Additional file 2: Figure S2-BDNF-induced Ca2+ signals after L-t-
LacCer pretreatment. (A) Representative images of the Fluo-8H Ca2+

sensor in the growth cone before (left) and after (right) BDNF (50 μg/mL)
treatment. Pseudocolor scale, blue = lower Ca2+ and white = higher Ca2+

concentrations. Scale bar, 5 μm. (B) As in (A) but with L-t-LacCer
pretreatment. Scale bar, 5 μm. (C and D) Graphs showing the maximal
fluorescence intensity after BDNF treatment normalized to the mean
fluorescence in the pretreatment period (F/F0), with or without L-t-LacCer

pretreatment (20 μM). The maximal F/F0 was measured at 1 time point
(C) and during a binned 3-min period (D) for both conditions. Data are
the mean ± s.e.m. (BDNF, n = 6; BDNF plus L-t-LacCer pretreatment, n =
8; *P < 0.05, t-test).

Additional file 3: Figure S3-Total b1-integrin surface levels are
unaffected by treatments to disrupt b1-integrin clustering or Ca2+

signaling. Quantification of b1-integrin surface levels after vehicle (BSA),
BDNF (50 μg/mL) alone, L-t-LacCer (20 μM) alone and plus BDNF, the b1-
integrin function-blocking antibody (Fxn Blk Ab; 5 μg/mL) alone and plus
BDNF, control antibody (5 μg/mL) alone and plus BDNF treatments. Data
are the mean ± s.e.m. (n > 50, n/s P > 0.05, ANOVA with Tukey’s post
hoc analysis).

Additional file 4: Figure S4-Total TrkB surface levels are unaffected
by treatments to disrupt b1-integrin clustering or Ca2+ signaling.
Quantification of TrkB surface levels after vehicle (BSA), BDNF (50 μg/mL)
alone, L-t-LacCer (20 μM) alone, L-t-LacCer plus BDNF, Fxn Blk Ab (5 μg/
mL) alone, Fxn Blk Ab plus BDNF, control antibody (5 μg/mL) alone, and
control antibody plus BDNF treatments. Data are the mean ± s.e.m. (n >
50, n/s P > 0.05, ANOVA with Tukey’s post hoc analysis).

Additional file 5: Movie S1-BDNF-induced growth cone membrane
expansion visualized through GFP-paxillin TIRF microscopy.
Representative time-lapse movie of a Xenopus spinal neuron growth
cone expressing GFP-paxillin. Uniform bath application of BDNF (50 μg/
mL; time 00:00) induced rapid membrane expansion. The TIRF images
were collected every 1 min as indicated at the top left. Scale bar, 5 μm.
Format: MOV (MPEG4 compression).

Additional file 6: Figure S5-BDNF-induced growth cone membrane
expansion according to experimental treatments. (A) Representative
live-cell phase images of the growth cone during the pre- and post-
treatment period with either vehicle (BSA), BDNF (50 μg/mL) alone, and
L-t-LacCer (20 μM) plus BDNF. Dashed lines represent growth cone
diameter measurement. Scale bar, 5 μm. (B) Quantification of the mean
growth cone diameter during the pre- and post-treatment period with
either vehicle (BSA), BDNF (50 μg/mL) alone, L-t-LacCer (20 μM) plus
BDNF, the b1-integrin function-blocking antibody (Fxn Blk Ab; 5 μg/mL)
alone and plus BDNF, BAPTA-AM (1 μM; 30 nM [Ca2+]e) alone and plus
BDNF. Data are the mean ± s.e.m. (n > 50, *P < 0.05, ANOVA with
Tukey’s post hoc analysis).

Additional file 7: Figure S6-Quality control analysis of b1-integrin
clustering after BDNF and MAG combination treatments. Growth
cones from each experimental group in Figure 6B were randomly
selected for quantification of b1-integrin clustering reanalysis (Research
Randomizer V. 3.0 software), using a range of fluorescence threshold
values (two-, two and a half-, three- and four-fold above the background
fluorescence). Data are the mean ± s.e.m. (n = 50, *P < 0.05, n/s P > 0.05
as compared to control, ANOVA with Tukey’s post hoc analysis.)

Additional file 8: Figure S7-Graphical depiction of temporal
treatment events for live-cell axon growth assays. Summary figure
showing the time-course sequence of combination treatments with L-t-
LacCer, the b1-integrin function-blocking antibody (Fxn Blk Ab), BAPTA,
MAG, and BDNF for the live cell axon growth rate assay used in Figures
3, 4, 5, 6.

Abbreviations
BDNF: brain-derived neurotrophic factor; BSA: bovine serum albumin; [Ca2+]i:
intracellular Ca2+ concentration; D-e-LacCer: D-lactosyl-β1-1’-N-octanoyl-D-
erythro-sphingosine; EGTA: ethylene glycol tetraacetic acid; FAK: focal
adhesion kinase; GFP: green fluorescent protein; GSL: glycosphingolipid; L-t-
LacCer: β-D-lactosyl-N-octanoyl-L-threo-sphingosine; MAG: myelin-associated
glycoprotein; TIRF microscopy: total internal reflection fluorescence
microscopy.
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