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Reagent and laboratory contamination can
critically impact sequence-based microbiome
analyses
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Abstract

Background: The study of microbial communities has been revolutionised in recent years by the widespread
adoption of culture independent analytical techniques such as 16S rRNA gene sequencing and metagenomics. One
potential confounder of these sequence-based approaches is the presence of contamination in DNA extraction kits
and other laboratory reagents.

Results: In this study we demonstrate that contaminating DNA is ubiquitous in commonly used DNA extraction
kits and other laboratory reagents, varies greatly in composition between different kits and kit batches, and that this
contamination critically impacts results obtained from samples containing a low microbial biomass. Contamination
impacts both PCR-based 16S rRNA gene surveys and shotgun metagenomics. We provide an extensive list of
potential contaminating genera, and guidelines on how to mitigate the effects of contamination.

Conclusions: These results suggest that caution should be advised when applying sequence-based techniques to
the study of microbiota present in low biomass environments. Concurrent sequencing of negative control samples
is strongly advised.
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Background
Culture-independent studies of microbial communities
are revolutionising our understanding of microbiology
and revealing exquisite interactions between microbes, an-
imals and plants. Two widely used techniques are deep se-
quence surveying of PCR-amplified marker genes such as
16S rRNA, or whole-genome shotgun metagenomics,
where the entire complement of community DNA is se-
quenced en masse. While both of these approaches are
powerful, they have important technical caveats and limi-
tations, which may distort taxonomic distributions and
frequencies observed in the sequence dataset. Such limita-
tions, which have been well reported in the literature, in-
clude choices relating to sample collection, sample storage
and preservation, DNA extraction, amplifying primers,
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sequencing technology, read length and depth and bio-
informatics analysis techniques [1,2].
A related additional problem is the introduction of

contaminating microbial DNA during sample prepar-
ation. Possible sources of DNA contamination include
molecular biology grade water [3-9], PCR reagents
[10-15] and DNA extraction kits themselves [16].
Contaminating sequences matching water- and soil-
associated bacterial genera including Acinetobacter,
Alcaligenes, Bacillus, Bradyrhizobium, Herbaspirillum,
Legionella, Leifsonia, Mesorhizobium, Methylobacterium,
Microbacterium, Novosphingobium, Pseudomonas, Ralsto-
nia, Sphingomonas, Stenotrophomonas and Xanthomonas
have been reported previously [3-15,17,18]. The pres-
ence of contaminating DNA is a particular challenge for
researchers working with samples containing a low
microbial biomass. In these cases, the low amount of
starting material may be effectively swamped by the
contaminating DNA and generate misleading results.
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Although the presence of such contaminating DNA has
been reported in the literature, usually associated with
PCR-based studies, its possible impact on high-throughput
16S rRNA gene-based profiling and shotgun metagenomics
studies has not been reported. In our laboratories we rou-
tinely sequence negative controls, consisting of ‘blank’
DNA extractions and subsequent PCR amplifications. Des-
pite adding no sample template at the DNA extraction step,
these negative control samples often yield a range of con-
taminating bacterial species (see Table 1), which are often
also visible in the human-derived samples that are proc-
essed concomitantly with the same batch of DNA extrac-
tion kits. The presence of contaminating sequences is
greater in low-biomass samples (such as from blood or the
lung) than in high-biomass samples (such as from faeces),
suggesting that there is a critical tipping point where con-
taminating DNA becomes dominant in sequence libraries.
Many recent publications [19-37] describe important

or core microbiota members, often members that are
biologically unexpected, which overlap with previously-
described contaminant genera. Spurred by this and by
the results from negative control samples in our own la-
boratories when dealing with low-input DNA samples,
we investigated the impact of contamination on micro-
biota studies and explored methods to limit the impact
of such contamination. In this study we identify the
range of contaminants present in commonly used DNA
Table 1 List of contaminant genera detected in sequenced ne

Phylum List of constituent contaminant genera

Proteobacteria Alpha-proteobacteria:

Afipia, Aquabacteriume, Asticcacaulis, Aurantimonas, Beije
Craurococcus, Devosia, Hoefleae, Mesorhizobium, Methylob
Phyllobacteriume, Rhizobiumc,d, Roseomonas, Sphingobium

Beta-proteobacteria:

Acidovoraxc,e, Azoarcuse, Azospira, Burkholderiad, Comam
Janthinobacteriume, Kingella, Leptothrixa, Limnobactere, M
Polaromonase, Ralstoniab,c,d,e, Schlegelella, Sulfuritalea, Un

Gamma-proteobacteria:

Acinetobactera,d,c, Enhydrobacter, Enterobacter, Escherichia
Stenotrophomonasa,b,c,d,e, Xanthomonasb

Actinobacteria Aeromicrobium, Arthrobacter, Beutenbergia, Brevibacterium
Kocuria, Microbacterium, Micrococcus, Microlunatus, Patul

Firmicutes Abiotrophia, Bacillusb, Brevibacillus, Brochothrix, Facklamia

Bacteroidetes Chryseobacterium, Dyadobacter, Flavobacteriumd, Hydrota

Deinococcus-
Thermus

Deinococcus

Acidobacteria Predominantly unclassified Acidobacteria Gp2 organism

The listed genera were all detected in sequenced negative controls that were proce
over a period of four years. A variety of DNA extraction and PCR kits were used ove
Kit for Soil. Genus names followed by a superscript letter indicate those that have a
Tanner et al. [12]; balso reported by Grahn et al. [14]; calso reported by Barton et al.
multiple displacement amplification kits (information provided by Paul Scott, Wellco
Birmingham; WTSI, Wellcome Trust Sanger Institute.
extraction reagents and demonstrate the significant im-
pact they can have on microbiota studies.

Results
16S rRNA gene sequencing of a pure Salmonella bongori
culture
To demonstrate the presence of contaminating DNA and
its impact on high and low biomass samples, we used 16S
rRNA gene sequence profiling of a pure culture of Sal-
monella bongori that had undergone five rounds of serial
ten-fold dilutions (equating to a range of approximately
108 cells as input for DNA extraction in the original un-
diluted sample, to 103 cells in dilution five). S. bongori was
chosen because we have not observed it as a contaminant
in any of our previous studies and it can be differentiated
from other Salmonella species by 16S rRNA gene sequen-
cing. As a pure culture was used as starting template, re-
gardless of starting biomass, any organisms other than S.
bongori observed in subsequent DNA sequencing results
must therefore be derived from contamination. Aliquots
from the dilution series were sent to three institutes
(Imperial College London, ICL; University of Birmingham,
UB; Wellcome Trust Sanger Institute, WTSI) and proc-
essed with different batches of the FastDNA SPIN Kit for
Soil (kit FP). 16S rRNA gene amplicons were generated
using both 20 and 40 PCR cycles and returned to WTSI
for Illumina MiSeq sequencing.
gative ‘blank’ controls

rinckia, Bosea, Bradyrhizobiumd, Brevundimonasc, Caulobacter,
acteriumc, Novosphingobium, Ochrobactrum, Paracoccus, Pedomicrobium,
, Sphingomonasc,d,e, Sphingopyxis

onasc, Cupriavidusc, Curvibacter, Delftiae, Duganellaa, Herbaspirilluma,c,
assiliac, Methylophilus, Methyloversatilise, Oxalobacter, Pelomonas,
dibacteriume, Variovorax

a,c,d,e, Nevskiae, Pseudomonasb,d,e, Pseudoxanthomonas, Psychrobacter,

, Corynebacterium, Curtobacterium, Dietzia, Geodermatophilus, Janibacter,
ibacter, Propionibacteriume, Rhodococcus, Tsukamurella

, Paenibacillus, Streptococcus

lea, Niastella, Olivibacter, Pedobacter, Wautersiella

s

ssed alongside human-derived samples in our laboratories (WTSI, ICL and UB)
r this period, although DNA was primarily extracted using the FastDNA SPIN
lso been independently reported as contaminants previously. aalso reported by
[17]; dalso reported by Laurence et al. [18]; ealso detected as contaminants of
me Trust Sanger Institute). ICL, Imperial College London; UB, University of
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S. bongori was the sole organism identified in the ori-
ginal undiluted culture but with subsequent dilutions a
range of contaminating bacterial groups increased in rela-
tive abundance while the proportion of S. bongori reads
concurrently decreased (Figure 1). By the fifth serial dilu-
tion, equivalent to an input biomass of roughly 103

Salmonella cells, contamination was the dominant feature
of the sequencing results. This pattern was consistent
across all three sites and was most pronounced with 40 cy-
cles of PCR. These results highlight a key problem with
Figure 1 Summary of 16S rRNA gene sequencing taxonomic assignmen
extractions contained approximately 108 cells, and controls (annotated in the
and WTSI laboratories and amplified with 40 PCR cycles. Each column represe
different taxonomic levels. a) Proportion of S. bongori sequence reads in black
is indicated by other colours. As the sample becomes more dilute, the propo
microorganism decreases and contaminants become more dominant. b) Abu
laboratory, excluding S. bongori. The profiles of the non-Salmonella reads with
low biomass samples. The most diluted 20-PCR cycle
samples resulted in low PCR product yields, leading to
under-representation in the multiplexed pool of samples
for sequencing as an equimolar mix could not be achieved
(read counts for each sample are listed in Additional file 1:
Table S1a). Conversely, using 40 PCR cycles generated
enough PCR products for effective sequencing (a mini-
mum of at least 14,000 reads per sample were returned,
see Additional file 1: Table S1a), but a significant propor-
tion of the resulting sequence data was derived from
t from ten-fold diluted pure cultures and controls. Undiluted DNA
Figure with 'con') were template-free PCRs. DNA was extracted at ICL, UB
nts a single sample; sections (a) and (b) describe the same samples at
. The proportional abundance of non-Salmonella reads at the Class level
rtion of the sequenced bacterial amplicons from the cultured
ndance of genera which make up >0.5% of the results from at least one
in each laboratory/kit batch are consistent but differ between sites.
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contaminating, non-Salmonella, DNA. It should be noted
though that even when using only 20 PCR cycles contam-
ination was still predominant with the lowest input bio-
mass [see Additional file 1: Figure S1].
Sequence profiles revealed some similar taxonomic clas-

sifications between all sites, including Acidobacteria Gp2,
Microbacterium, Propionibacterium and Pseudomonas
(Figure 1b). Differences between sites were observed, how-
ever, with Chryseobacterium, Enterobacter and Massilia
more dominant at WTSI, Sphingomonas at UB, and Cor-
ynebacterium, Facklamia and Streptococcus at ICL, along
with a greater proportion of Actinobacteria in general
(Figure 1a). This illustrates that there is variation in con-
taminant content between laboratories, which may be due
to differences between reagent/kit batches or contami-
nants introduced from the wider laboratory environment.
Many of the contaminating operational taxonomic units
(OTUs) represent bacterial genera normally found in soil
and water, for example Arthrobacter, Burkholderia, Chry-
seobacterium, Ochrobactrum, Pseudomonas, Ralstonia,
Rhodococcus and Sphingomonas, while others, such as
Corynebacterium, Propionibacterium and Streptococcus,
are common human skin-associated organisms. By se-
quencing PCR ‘blank’ negative controls, specifically PCR-
amplified ultrapure water with no template DNA added,
we were able to distinguish between taxa that had origi-
nated from the DNA extraction kits as opposed to DNA
from other sources (such as PCR kit reagents, laboratory
consumables or laboratory personnel). Sixty-three taxa
were absent from all PCR blank controls but present at
>0.1% proportional abundance in one or more serially-
diluted S. bongori samples [see Additional file 1: Figure
S2], suggesting that they were introduced to the samples
at the DNA extraction stage. These include several abun-
dant genera observed at all three sites, such as Acidobac-
teria Gp2, Burkholderia, unclassified Burkholderiaceae
and Mesorhizobium. It also includes taxa, such as Hydro-
talea and Bradyrhizobium, that were only abundant in
samples processed by one or two sites, possibly indicative
of variation in contaminants between different batches of
the same type of DNA extraction kit.
Quantitative PCR of bacterial biomass
To assess how much background bacterial DNA was
present in the samples, we performed qPCR of bacterial
16S rRNA genes and calculated the copy number of
genes present with reference to a standard curve. As-
suming a complete absence of contamination, copy
number of the 16S rRNA genes present should correlate
with dilution of S. bongori and reduce in a linear man-
ner. However, at the third dilution copy number
remained stable and did not reduce further, indicating
the presence of background DNA at approximately 500
copies per μl of elution volume from the DNA extrac-
tion kit (Figure 2).
Shotgun metagenomics of a pure S. bongori culture
processed with four commercial DNA extraction kits
Having established that 16S rRNA gene sequencing re-
sults can be confounded by contaminating DNA, we
next investigated whether similar patterns emerge in
shotgun metagenomics studies, which do not involve a
targeted PCR step. We hypothesised that if contamin-
ation arises from the DNA extraction kit, it should also
be present in metagenomic sequencing results. DNA ex-
traction kits from four different manufacturers were
used in order to investigate whether or not the problem
was limited to a single manufacturer. Aliquots from the
same S. bongori dilution series were processed at UB
with the FastDNA SPIN Kit for Soil (FP), MoBio Ultra-
Clean Microbial DNA Isolation Kit (MB), QIAmp DNA
Stool Mini Kit (QIA) and PSP Spin Stool DNA Plus kit
(PSP). As with 16S rRNA gene sequencing, it was found
that as the sample dilution increased, the proportion of
reads mapping to the S. bongori reference genome se-
quence decreased (Figure 3a). Regardless of kit, contam-
ination was always the predominant feature of the
sequence data by the fourth serial dilution, which
equated to an input of around 104 Salmonella cells.
Samples were processed concurrently within the same

laboratory. If the contamination was derived from the la-
boratory environment then similar bacterial compositions
would be expected in each of the results. Instead, a range
of environmental bacteria was observed, which were of a
different profile in each kit (Figure 3b). FP had a stable kit
profile dominated by Burkholderia, PSP was dominated by
Bradyrhizobium, while the QIA kit had the most complex
mix of bacterial DNA. Bradyrhizobiaceae, Burkholderia-
ceae, Chitinophagaceae, Comomonadaceae, Propionibac-
teriaceae and Pseudomonadaceae were present in at least
three quarters of the dilutions from PSP, FP and QIA kits.
However, relative abundances of taxa at the Family level
varied according to kit: FP was marked by Burkholderia-
ceae and Enterobacteriaceae, PSP was marked by Bradyr-
hizobiaceae and Chitinophagaceae. The contamination in
the QIA kit was relatively diverse in comparison to the
other kits, and included higher proportions of Aerococca-
ceae, Bacillaceae, Flavobacteriaceae, Microbacteriaceae,
Paenibacillaceae, Planctomycetaceae and Polyangiaceae
than the other kits. Kit MB did not have a distinct con-
taminant profile. This was likely a result of the very low
number of reads sequenced, with 210 reads in dilution 2,
79 reads in dilution 3 and fewer than 20 reads in subse-
quent dilutions [see Additional file 1: Table S1b]. Although
read count is only a semi-quantitative measure of DNA
concentration, this may indicate that levels of background



Figure 2 Copy number of total 16S rRNA genes present in a dilution series of S. bongori culture. Total bacterial DNA present in serial
ten-fold dilutions of a pure S. bongori culture was quantified using qPCR. While the copy number initially reduces in tandem with increased
dilution, plateauing after four dilutions indicates consistent background levels of contaminating DNA. Error bars indicate standard deviation of
triplicate reactions. The broken red line indicates the detection limit of 45 copies of 16S rRNA genes. The no template internal control for the
qPCR reactions (shown in blue) was below the cycle threshold selected for interpreting the fluorescence values (that is, less than 0), indicating
the contamination did not come from the qPCR reagents themselves.
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contamination from this kit were comparatively lower than
the other kits tested.
Comparatively few contaminant taxa that were de-

tected in the ‘blank’ water control, which was dominated
by Pseudomonas, were detected in the serially diluted
metagenomic samples. This provided further evidence
that the observed contamination was likely to have origi-
nated in large part from the DNA extraction kits them-
selves. These metagenomic results, therefore, clearly
show that contamination becomes the dominant feature
of sequence data from low biomass samples, and that
the kit used to extract DNA can have an impact on the
observed bacterial diversity, even in the absence of a
PCR amplification step. Reducing input biomass again
increases the impact of these contaminants upon the ob-
served microbiota.
Impact of contaminated extraction kits on a study of
low-biomass microbiota
Having established that the contamination in different lots
of DNA extraction kits is not constant or predictable, we
next show the impact that this can have on real datasets. A
recent study in a refugee camp on the border between
Thailand and Burma used an existing nasopharyngeal swab
archive [38] to examine the development of the infant
nasopharyngeal microbiota. A cohort of 20 children born
in 2007/2008 were sampled every month until two years of
age, and the 16S rRNA gene profiles of these swabs were
sequenced by 454 pyrosequencing.
Principal coordinate analysis (PCoA) showed two dis-
tinct clusters distinguishing samples taken during early life
from those taken from subsequent sampling time points,
suggesting an early, founder nasopharyngeal microbiota
(Figure 4a). Four batches of FP kits had been used to ex-
tract the samples and a record was made of which kit was
used for each sample. Further analysis of the OTUs
present indicated that samples possessed different com-
munities depending on which kit had been used for DNA
extraction (Figure 4b,d,e) and that the first two kits’ asso-
ciated OTUs made up the majority of their samples’ reads
(Figure 4d). As samples had been extracted in chrono-
logical order, rather than random order, this led to the
false conclusion that OTUs from the first two kits were
associated with age. OTUs driving clustering to the left in
Figure 4a and b (P value of <0.01), were classified as
Achromobacter, Aminobacter, Brevundimonas, Herbaspir-
illum, Ochrobactrum, Pedobacter, Pseudomonas, Rhodo-
coccus, Sphingomonas and Stenotrophomonas. OTUs
driving data points to the right (P value of <0.01) included
Acidaminococcus and Ralstonia. A full list of significant
OTUs is shown in Additional file 1: Table S2. Once the
contaminants were identified and removed, the PCoA
clustering of samples from the run no longer had a dis-
cernible pattern, showing that the contamination was the
biggest driver of sample ordination (Figure 4c). New ali-
quots were obtained from the original sample archive and
were reprocessed using a different kit lot and sequenced.
The previously observed contaminant OTUs were not
detected, further confirming their absence in the original



Figure 3 Summary of the metagenomic data for the S. bongori ten-fold dilution series (initial undiluted samples contained approximately
108 cells), extracted with four different kits. Each column represents a single sample. A sample of ultrapure water, without DNA extraction, was also
sequenced (labelled ‘water’). a) As the starting material becomes more diluted, the proportion of sequenced reads mapping to the S. bongori
reference genome decreases for all kits and contamination becomes more prominent. b) The profile of the non-Salmonella reads (grouped by Family,
only those comprising >1% of reads from at least one kit are shown) is different for each of the four kits.
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nasopharyngeal samples (manuscript in preparation,
Salter S, Turner P, Turner C, Watthanaworawit W,
Goldblatt D, Nosten F, Mather A, Parkhill J, Bentley S).
This dataset, therefore, serves as a case study for the

significant, and potentially misleading, impact that con-
taminants originating from kits can have on microbiota
analyses and subsequent conclusions.

Discussion
Results presented here show that contamination with
bacterial DNA or cells in DNA extraction kit reagents,
and the wider laboratory environment, should not only
be a concern for 16S rRNA gene sequencing projects,
which require PCR amplification, but also for shotgun
metagenomics projects.
Contaminating DNA has been reported from PCR re-

agents, kits and water many times [3-15,17]. The taxa
identified are mostly soil- or water-dwelling bacteria and
are frequently associated with nitrogen fixation. One ex-
planation for this may be that nitrogen is often used instead
of air in ultrapure water storage tanks [3]. Contamination
of DNA extraction kit reagents has also been reported [16]
and kit contamination is a particular challenge for low bio-
mass studies, which may provide little template DNA to
compete with that in the reagents for amplification [12,39].
Issues of contamination have plagued studies, with high-
profile examples in the fields of novel virus discovery, such
as in the false association of XMRV and chronic fatigue
syndrome [40], and the study of ancient DNA of early
humans and pathogens [41,42]. The microbial content of
ancient ice core samples has also shown to be inconsistent
when analysed by different laboratories [39].
The importance of this issue when analysing low bio-

mass samples, despite such high-profile reports of reagent



Figure 4 Summary of the contaminant content of nasopharyngeal samples from Thailand. a) The PCoA plot appears to show age-related
clustering; however, b) extraction kit lot explains the pattern better. c) When coloured by age, the plot shows the loss of the initial clustering
pattern after excluding contaminant OTUs from ordination. d) The proportion of reads attributed to contaminant OTUs for each sample,
demonstrating that the first two kits were the most heavily contaminated. e) Genus-level profile of contaminant OTUs for each kit used.
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contamination, apparently remains underappreciated in
the microbiota research community. Well-controlled stud-
ies, such as in Segal et al. who examined the lung micro-
biota through bronchoalveolar lavage sampling, report
their results against the backdrop of copious sequenced
‘background’ controls [43]. However, many recent DNA
sequence-based publications that describe the microbial
communities of low-biomass environments do not report
DNA quantification on initial samples, sequencing of
negative controls or describe their contaminant removal
or identification procedures. Our literature searches have
indicated that there are a number of low biomass micro-
biota studies that report taxa, often statistically noteworthy
or core members, that overlap with those we report here
from our negative control kit reagents and water (shown
in Table 1). While it is possible that the suspect taxa are
genuinely present in these samples, in many cases they are
biologically unexpected: for example, rhizosphere-
associated bacteria that have been implicated in human
disease [27,44]. Tellingly, Laurence et al. [18] recently



Box 1

Recommendations to reduce the impact of contaminants in

sequence-based, low-biomass microbiota studies:

1. Maximise the starting sample biomass by choice of sample

type, filtration, or enrichment if possible. If microbial load is

less than approximately 103 to 104 cells it may not be possible

to obtain robust results as contamination appears to

predominate. Gram staining, fluorescent in situ hybridisation

(FISH), qPCR or other forms of DNA quantification prior to

amplicon generation/sequencing may be useful guides in this

respect. However, it must be noted that the detection limit of

microscopy-based techniques may impede accurate

quantification of bacterial cell numbers at very low levels, and

DNA quantification measures may be impacted by

contamination introduced at the DNA extraction stage.

2. Minimise risk of contamination at the point of sample

collection. PCR and extraction kit reagents may be treated to

reduce contaminant DNA.

3. Collect, process and sequence technical controls from each

batch of sample collection/storage medium, each extraction

kit, and each PCR kit concurrently with the environmental

samples of interest.

4. Samples should be processed in random order to avoid

creating false patterns and ideally carried out in replicates,

which should be processed using different kit/reagent batches.

5. A record should be made of which sample was processed

with which kit so that contamination of a particular kit lot

number can be traced through to the final dataset.

6. Quantification of the negative controls and samples should

be ongoing during processing in order to monitor

contamination as it arises.

7. After sequencing, be wary of taxa that are present in the

negative controls, taxa that are statistically associated with a

particular batch of reagents, and taxa that are unexpected

biologically and also coincide with previously reported

contaminants, such as those listed in Table 1.

8. In the event that suspect taxa are still of interest, repeat

sequencing should be carried out on additional samples using

separate batches of DNA extraction kits/reagents, and, ideally,

a non-sequencing-based approach (such as traditional culturing

or FISH, using properly validated probe sets) should also be

used to further confirm their presence in the samples.
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demonstrated with an in silico analysis that Bradyrhizobium
is a common contaminant of sequencing datasets including
the 1000 Human Genome Project. Having demonstrated
the critical impact that contaminating DNA may have on
conclusions drawn from sequence-based data, it becomes
important to be able to determine which observations are
genuine. For environmental samples, such as soil or water,
the problem of identifying contaminants requires special at-
tention as the contaminants may be taxa that are indistin-
guishable from those genuinely present in the samples.
A number of methods have been devised to treat reagents

in order to reduce potential contamination, including:
gamma [45] or UV radiation [13,46-48], DNase treatment
[10,13,47,49-51], restriction digests [10,13,47,52,53], caesium
chloride density gradient centrifugation [10] and DNA inter-
calation and crosslinking with 8-methoxypsoralen [47,54],
propidium monoazide [55] or ethidium monoazide [56,57].
However, tests of these methods show varying levels of suc-
cess. Radiation may reduce the activity of enzymes, DNase
inactivation can also damage the polymerase, restriction en-
zymes may introduce more contaminating DNA, and un-
bound DNA intercalators inhibit amplification of the
intended template [56,58]. An alternative to decontamin-
ation is to preferentially amplify the template DNA using
broad range primer extension PCR [59] but this, and the
treatment of the PCR reagents, cannot account for contam-
ination introduced through DNA extraction kits.
A simple in silico approach for microbiota studies is to

identify contaminants that are sequenced using negative
controls or contaminant databases in order to screen
them out of downstream analysis [17,60]. In the event that
contaminating organisms are discovered that are also bio-
logically plausible and should not be excluded from the
analysis, alternative approaches could be employed [61].
Statistical approaches and basic visualization to compare
relative abundances or rank-order information between
negative controls and samples may help determine if taxa
are also real. Alternative bioinformatics approaches, such
as oligotyping [62], could potentially provide fine-grained
discrimination between contaminant OTUs and genuine
OTUs assigned to the same genus or species. For shotgun
metagenomics studies, use of strain-specific genes or use
of phylogenetic information across multiple marker genes
may also provide necessary discrimination. Deviation from
a neutral model of community formation to compare
source (kit controls) and recipient communities may also
be useful in this context [63].
By adding negative sequencing controls (specifically,

template-free ‘blanks’ processed with the same DNA ex-
traction and PCR amplification kits as the real samples,
sequenced on the same run) it is possible to identify
reads originating from contamination, and distinguish
them from those derived from actual constituent taxa.
We have developed a set of recommendations that may
help to limit the impact of reagent contamination (Box 1).
With awareness of common contaminating species,
careful collection of controls to cover different batches
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of sampling, extraction and PCR kits, and sequencing to
monitor the content of these controls, it should be pos-
sible to effectively mitigate the impact of contaminants
in microbiota studies.

Conclusions
We have shown that bacterial DNA contamination in
extraction kits and laboratory reagents can significantly
influence the results of microbiota studies, particularly
when investigating samples containing a low microbial
biomass. Such contamination is a concern for both 16S
rRNA gene sequencing projects, which require targeted
PCR amplification and enrichment, and also for shotgun
metagenomic projects which do not. Awareness of this
issue by the microbiota research community is import-
ant to ensure that studies are adequately controlled and
erroneous conclusions are not drawn from culture-
independent investigations.

Methods
Samples
For the 16S rRNA gene and metagenomic profiling, Sal-
monella bongori strain NCTC-12419 was cultured over-
night on Luria-Bertani (LB) plates without antibiotics at
37°C. A single colony was used to inoculate an LB broth,
which was incubated with shaking at 37°C overnight. The
OD600 upon retrieval was 1.62, equating to around 109

colony forming units (CFU)/ml. A total of 20 μl from the
culture was plated out on LB and observed to be a pure
culture after overnight incubation. Five ten-fold dilutions
from the starter culture were made in fresh LB. Aliquots
(1 ml) of each dilution were immediately stored at −80°C,
and duplicates shipped on dry ice to Imperial College
London and the University of Birmingham.
For the nasopharyngeal microbiota study, the samples

were nasopharyngeal swabs collected from a cohort of
infants in the Maela refugee camp in Thailand as de-
scribed previously [38]. These were vortexed in skimmed
milk, tryptone, glucose and glycerin media (STGG)
medium and then stored at −80°C.

DNA extraction
For the 16S rRNA gene profiling work, each of the three
institutes (Imperial College London, ICL; University of
Birmingham, UB; Wellcome Trust Sanger Institute, WTSI)
extracted DNA from the S. bongori aliquots in parallel,
using different production batches of the FastDNA Spin
Kit For Soil (MP Biomedicals, Santa Ana, California,
USA kit lots #38098, #15447 and #30252), according to
the manufacturer’s protocol. Each aliquot was extracted
once at each institute. UB and WTSI extracted DNA from
200 μl of sample and eluted in 50 μl; ICL extracted from
500 μl of sample and eluted in 100 μl. This meant that our
DNA extractions across the five-fold serial dilutions
spanned a range of sample biomass from approximately
108 down to 103 cells.
For the metagenomic sequencing, 200 μl aliquots of

each S. bongori dilution were processed using four com-
mercially available DNA extraction kits at UB. The final
elution volume for all kits was 100 μl per sample. The
FP kit (lot #38098) was used according to the manufac-
turer’s protocol, with the exception of the homogeniser
step. This was performed with a Qiagen Tissue Lyser: one
minute at speed 30/second followed by 30 seconds cooling
the tubes on ice, repeated three times. The UltraClean
Microbial DNA Isolation Kit (MO BIO Laboratories,
Carlsbad, California, USA) (kit MB, lot #U13F22) was
used according to the manufacturer’s protocol with the
exception of homogenisation, which was replaced by
10 minutes of vortexing. The QIAmp DNA Stool Mini
Kit (Qiagen, Venlo, Limburg, Netherlands) (kit QIA,
lot #145036714) was used according to the manufac-
turer’s stool pathogen detection protocol. The heating
step was at 90°C. The PSP Spin Stool DNA Plus kit
(STRATEC Molecular, Birkenfeld, Germany) (kit PSP,
lot #JB110047) was used according to the manufac-
turer’s stool homogenate protocol. Each aliquot was
processed once with each kit. All extraction reagents
were included with all kits, except for ethanol added for
wash steps. In addition to these samples, a negative con-
trol was included consisting of ultrapure water that had
not been processed with any DNA extraction kit.
For the nasopharyngeal microbiota study, a 200 μl ali-

quot was taken from each sample and processed with
the manufacturer’s vortex modification of the FP kit
protocol. DNA was then shipped to WTSI for further
processing and sequencing (see below).

qPCR
A standard curve was produced by cloning the near full-
length 16S rRNA gene of Vibrio natriegens DSMZ 759
amplified using primers 27 F and 1492R [64] into the
TOPO TA vector (Life Technologies, Carlsbad, California,
USA), quantifying using fluorescent assay (Quant-IT, Life
Technologies) and diluting to produce a standard curve
from 108 to 103 copies per μl. A ViiA 7 Real-time PCR sys-
tem (Life Technologies) with SYBR Fast qPCR Master
Mix (KAPA Biosystems, Wilmington, Massachusetts,
USA) was used to perform quantitative PCR of the V4 re-
gion of the bacterial 16S rRNA gene for each S. bongori di-
lution extraction (which were carried out using the
FastDNA SPIN Kit for Soil (MP Biomedicals), kit lot
#15447). Primers used were: S-D-Bact-0564-a-S- 15, 5′-
AYTGGGYDTAAAGNG and S-D-Bact-0785-b-A-18, 5-
TACNVGGGTATCTAATCC [65] generating a 253 bp
amplicon. Reactions (15 μl) were performed in triplicate
and included template-free controls. Reactions consisted
of 0.3 μl of 10 μM dilutions of each primer, 7.5 μl of SYBR
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Fast mastermix and 1.9 μl of microbial DNA free PCR
water (MOBIO) and 5 μl of 1:5 diluted template (to avoid
pipetting less than 5 μl). Cycle conditions were 90°C for
3 minutes followed by 40 cycles of: 95°C for 20 seconds,
50°C for 30 seconds, and 72°C for 30 seconds. Melt curves
were run from 60 to 95°C over 15 minutes.

Sequencing
Samples for the S. bongori culture 16S rRNA gene profiling
were PCR-amplified using barcoded fusion primers target-
ing the V1-V2 region of the gene (27f_Miseq: AATGA
TACGGCGACCACCGAGATCTACAC TATGGTAATT
CC AGMGTTYGATYMTGGCTCAG and 338R_MiSeq:
CAAGCAGAAGACGGCATACGAGAT nnnnnnnnnnnn
AGTCAGTCAG AA GCTGCCTCCCGTAGGAGT, where
the n string represents unique 12-mer barcodes used
for each sample studied, and then sequenced on the
Illumina MiSeq platform using 2 × 250 bp cycles. The
PCR amplification was carried out with the Q5 High-
Fidelity PCR kit (New England Biolabs, Ipswich,
Massachusetts, USA) at WTSI, ICL and UB, using fresh
reagents and consumables, autoclaved microcentrifuge
tubes, filtered pipette tips, and performed in a hood to
reduce the risk of airborne contamination. Each sample
was amplified with both 20 and 40 PCR cycles under
the following conditions: 94°C for 30 seconds, 53°C for
30 seconds, 68°C for 2 minutes. Negative controls in
the form of a PCR-amplified ultrapure water sample
were included for each batch. PCR products were visua-
lised on an agarose gel: bands were visible for all
40 cycle samples and the first four dilutions of the
20 cycle samples. Data are deposited under ENA project
accession EMBL: ERP006737; sample details and indi-
vidual accession numbers are detailed in Additional
file 1: Table S1a.
For metagenomic sequencing, all samples were quan-

tified using Nanodrop (Thermo Scientific, Waltham,
Massachusetts, USA) and Qubit (Life Technologies)
machines, and did not need to be diluted before Illumina
Nextera XT library preparation (processed according to
the manufacturer’s protocol). Libraries were multiplexed
on the Illumina MiSeq in paired 250-base mode following
a standard MiSeq wash protocol. Data are deposited
under ENA project accession EMBL: ERP006808. Sample
details and individual accession numbers are provided in
Additional file 1: Table S1b.
For the nasopharyngeal microbiota study, DNA extrac-

tions from 182 swabs were PCR-amplified and barcoded
for sequencing the 16S rRNA gene V3-V5 region on the
454 platform as described previously [66].

Sequence analysis
For the 16S rRNA gene profiling, data were processed
using mothur [67]. The mothur MiSeq SOP [68] was
followed with the exception of screen.seqs, which used the
maximum length of the 97.5 percentile value, and chimera
checking, which was performed with Perseus [69] instead
of UCHIME. Read counts post-processing and the num-
ber of genus-level phylotypes present in each sample are
shown in Additional file 1: Table S1a.
For the metagenomic profiling, reads were quality

checked and trimmed for low-quality regions and adaptor
sequences using Trimmomatic [70]. Similarity sequencing
for taxonomic assignments was performed using LAST in
six-frame translation mode against the Microbial RefSeq
protein database [71]. Taxonomic assignments were deter-
mined with MEGAN, which employs a lowest common
ancestor (LCA) to taxonomic assignments, using settings
Min Support 2, Min Score 250, Max Expected 0.1, Top
Percent 10.0 [72].
For the nasopharyngeal microbiota study, the data were

processed, cleaned and analysed using the mothur Schloss
SOP [73] and randomly subsampled to 200 sequence
reads per sample. As part of the contamination identifica-
tion procedure, the metastats package [74] within mothur
was used to identify OTUs that were significantly associ-
ated with each extraction kit batch. Jaccard PCoA plots
were generated with mothur, comparing the dataset with
and without these flagged OTUs included.

Additional file

Additional file 1: Figure S1 (16S rRNA gene profile of S. bongori
amplified with 20 PCR cycles), Figure S2 (genus-level phylotypes
that are likely to have originated during DNA extractions), Tables
S1a and S1b (accession numbers and read counts for 16S and
metagenomic data respectively) and Table S2 (OTUs with significant
correlation in Figures 4b and 4c).
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