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Abstract

Background: Alternative splicing is primarily controlled by the activity of splicing factors and by the elongation of
the RNA polymerase Il (RNAPII). Recent experiments have suggested a new complex network of splicing regulation
involving chromatin, transcription and multiple protein factors. In particular, the CCCTC-binding factor (CTCF), the
Argonaute protein AGOT, and members of the heterochromatin protein 1 (HP1) family have been implicated in the
regulation of splicing associated with chromatin and the elongation of RNAPII. These results raise the question of

putative DNA binding site for HP1a.
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whether these proteins may associate at the chromatin level to modulate alternative splicing.

Results: Using chromatin immunoprecipitation sequencing (ChlIP-Seq) data for CTCF, AGO1, HP1a, H3K27me3,
H3K9me2, H3K36me3, RNAPII, total H3 and 5metC and alternative splicing arrays from two cell lines, we have
analyzed the combinatorial code of their binding to chromatin in relation to the alternative splicing patterns between
two cell lines, MCF7 and MCF10. Using Machine Learning techniques, we identified the changes in chromatin signals
that are most significantly associated with splicing regulation between these two cell lines. Moreover, we have built

a map of the chromatin signals on the pre-mRNA, that is, a chromatin-based RNA-map, which can explain 606 (68.55%)
of the regulated events between MCF7 and MCF10. This chromatin code involves the presence of HP1a, CTCF,

AGO1, RNAPII and histone marks around regulated exons and can differentiate patterns of skipping and inclusion.
Additionally, we found a significant association of HP1a and CTCF activities around the regulated exons and a

Conclusions: Our results show that a considerable number of alternative splicing events could have a chromatin-
dependent regulation involving the association of HP1a and CTCF near regulated exons. Additionally, we find
further evidence for the involvement of HP1a and AGO1 in chromatin-related splicing regulation.

Background

Alternative splicing is a key mechanism to generate func-
tional diversity in most eukaryotic cells. Its importance is
underlined by the fact that it potentially affects more than
90% of human genes [1,2] and its deregulation is fre-
quently associated with severe diseases [3]. The regulation
of alternative splicing has been generally thought of as
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being primarily controlled by the activity of splicing fac-
tors and by the elongation rate of the RNA polymerase II
[4]. However, during the last few years it has become clear
that regulation of pre-mRNA splicing is more complex
than initially thought and a new picture has emerged
whereby various mechanisms of regulation are coupled in
a network of interactions between RNA, chromatin and
protein factors [5-7]. The analysis of nucleosome position-
ing data has suggested a general role of chromatin in exon
definition [8-10], and a number of experiments have pro-
vided evidence that chromatin can interact with splicing
through various ways [11-23]. One of these mechanisms
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involves adaptor proteins that can bridge between modi-
fied histones and splicing factors [11-14]. In a different
mechanism, spliceosomal factors can influence the chro-
matin state and affect transcriptional activity [15-18].

A third, non-mutually exclusive, mechanism proposes
that changes in chromatin that interfere with RNA poly-
merase II (RNAPII) elongation can also affect splicing
regulation [19-23]. In this context, the CCCTC-binding
factor (CTCF), which is implicated in diverse functions
related to the global organization of chromatin [24] and
acts as a barrier for the spreading of heterochromatin
[25], has been shown to be capable of stalling elongation
of RNAPII [26] and to regulate the splicing of upstream
exons with weak splice sites [23]. Similarly, siRNAs di-
rected by the Argonaute protein (AGO1) to intragenic re-
gions induce chromatin changes that alter RNAPII
elongation, thereby affecting splicing [21] in a mechanism
analogous to transcriptional gene silencing [27,28]. Al-
though the main function of Argonaute proteins is trad-
itionally described to be performed in the cytoplasm in
relation to the post-transcriptional gene silencing mechan-
ism [29], there is increasing evidence for a nuclear role
[27,28,30-37]. In this regard, we have recently shown by
ChIP-Seq that AGO1 binds to active transcriptional en-
hancers in mammalian cells and that through this bind-
ing it regulates the constitutive and alternative splicing
of neighboring genes [37]. Interestingly, the Drosophila
Argonaute protein Ago-2 associates with CTCF at pro-
moters [33], and its binding sites include part of the
CTCF motif [33,36]. On the other hand, there is also
evidence that members of the heterochromatin protein
1 (HP1) family have a general role in co-transcriptional
RNA processing and splicing [22,38,39]. HP1 is a family
of non-histone proteins that recognize methylated H3K9,
are responsible for the establishment and maintenance of
heterochromatin, and associate with other non-histone
proteins [40-42]. Furthermore, HP1 proteins have been
implicated in heterochromatin formation linked to AGO1
activity in alternative splicing [21,35]. These results raise
two interesting questions: whether the CTCF, AGO1 and
HP1 proteins associate together at the chromatin level in
human cells, and whether these associations play any role
in alternative splicing regulation.

To address these questions, we analyzed the combina-
torial code of AGO1, CTCE and HPla together with
RNAPII activity as well as the histone marks H3K27me3,
H3K9me2, H3K36me3, and total H3 and 5metC signals in
relation to the alternative splicing differences between two
cell lines, a non-tumorigenic immortalized breast epithe-
lial cell line, MCF10, and its cancer-derived counterpart,
MCF7. Using Machine Learning (ML) techniques, we
uncovered the chromatin signals that associate signifi-
cantly with the splicing regulation of the pre-mRNA
comparing these two cell lines, which leads us to
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describe a chromatin-based RNA-map that explains nearly
70% of all the regulated alternative splicing events be-
tween the two cell lines. Moreover, we find a significant
association between HP1la and CTCEF in relation to the
alternative splicing events and a putative binding motif
for HP1a.

Results and discussion
Association of chromatin signals with alternative splicing
events
We used a splicing microarray analysis to obtain alterna-
tive splicing events (ASEs) showing a significant change
between MCF7 and MCF10. From this group we se-
lected an equal number of inclusion and skipping events
(442) located in genes showing no change in expression
(Methods). These ASEs will be referred to as regulated
events. On the other hand, we used ChIP-Seq data for
AGO1, CTCF, H3K27me3, H3K9me2, H3K36me3, RNA-
PII, HP1q, total H3 and 5metC in the same cell lines, and
considered those read-clusters with a significant signal with
respect to Control ChIP-Seq experiments (P-value <0.05)
(Methods). For each ASE, we defined 15 different windows
(Figure 1A), and for each window, we calculated the rela-
tive enrichment of the read densities between MCF7 and
MCFI10 for each one of the ChIP-Seq experiments. This
defined one attribute for each sample-window pair, with a
value corresponding to the relative enrichment z-score of
the ChIP-Seq signal. We thus generated 8 x 15 = 120 attri-
bute values for each alternative splicing event (Figure 1A).
Pairwise correlation analysis of these 120 attributes for
skipping, inclusion and non-regulated events showed sig-
nificant differences between regulated and non-regulated
events (Figures 1B to D) (Additional file 1: Figure S1), with
higher correlation between attributes in regulated events
compared to non-regulated events. Besides the high corre-
lations between attributes corresponding to the same
ChIP-Seq experiment in neighboring regions, we observed
that the strongest correlations involved the intronic re-
gions flanking the regulated exons. In particular, we found
that H3K27me3-11 versus H3K9me2-I1 and H3K36me3-
I1 versus H3K27me3-I1 have high correlation in the
three groups of events, indicating that these signals
would not differentiate regulated from non-regulated
events (Additional file 1: Tables S1, S2 and S3). On the
other hand, there were differences in other attributes,
which could potentially separate inclusion and skipping
events (Additional file 1: Tables S4 and S5). Regulated
events for which inclusion is upregulated in MCF7 cells
compared to MCF10 cells (inclusion events) showed
high correlations between histone marks on the exon-
intron junctions (Figure 1B) (Pearson correlation R =
0.85 for H3K36me3-J1 versus H3K9me2-J1, R = 0.85 for
H3K36me3-J3 versus H3K9me2-J1), between histone
marks and AGO1 on the first upstream exon-intron
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shown in Additional file 1: Figure S1.

Figure 1 Attributes and their correlations. (A) Diagram of the 15 windows defined on exon cassette events: 300 nt length windows flanking
exons (w1,..., wob), 200 nt length regions covering 100 nt on either side of the exon boundaries (J
and the extent of the flanking introns (11 and 12). Pearson correlation coefficients were calculated pairwise for the different attributes in skipping
(B), inclusion (C) and non-regulated (D) events. The three heatmaps show in the same order those attribute pairs that have R 20.6 or R <-0.5 in
inclusion and/or skipping events, and involving attributes from two different experiments. Correlation coefficient values are given in Additional
file 1: Tables S1-S5. The heatmaps for the pairwise correlations for all the 120 attributes for inclusion, skipping and non-regulated events are

1,...)4), the entire exons (E1, E2 and E3)

junction and on the second downstream exon-intron
junction (R = 0.62 for H3K36me3-J4 versus AGO1-J2
and AGOI1-J4) and on the first exon-intron junction
and downstream windows (R = 0.61 for 5metC-J1 versus
CTCF-w5) (Additional file 1: Table S2). In contrast, in
regulated events that show skipping in MCF7 (skipping
events) we found mostly high correlations between
AGO1 and RNAPII (R = 0.74 for AGO1-I2 versus
RNAPII-J2, R = 0.73 for AGO1-w6 versus RNAPII-I2),
CTCEF and histone modifications (R = 0.63 for CTCF-J3
versus H3K9me2-w2 and CTCF-wl versus H3K27me3-
w5 R = 0.67) and between AGO1 and H3K27me3 down-
stream of the alternative exon (R = 0.63 for AGO1-w6
versus H3K27me3-11) (Figure 1C). We also found anti-
correlating attributes for inclusion and skipping events:
inclusion events showed mainly AGO1 anti-correlating
with histone marks and DNA methylation (R = -0.63
for AGO1-11 versus 5metC-J1, R = -0.52 for AGO1-w2
versus H3K9me2-w5) and HP1 anti-correlating with
H3K27me3 (Pearson correlation factor R = -0.58 for
HP1-w1 versus H3K27me3-J1). Similarly, skipping events
also showed various anti-correlation patterns (R = -0.68
for RNAPII-w4 versus H3K9me2-w4 and R = -0.64 for
RNAPII-w3 versus H3K27me3-w6). In contrast, most of
these correlations did not appear in non-regulated events.
The correlations and anti-correlations found in regulated
events and the differences with non-regulated events sug-
gest a cooperative role of the different chromatin signals
and factors in relation to specific patterns of alternative
splicing regulation.

A chromatin code of splicing regulation

In order to test a possible association of chromatin
signals with the changes in splicing patterns, we built a
binary classification model to separate inclusion from
skipping events, selecting the predictors from the 120 at-
tributes described above (Methods). To select the most
informative attributes for the classification, we used a
combination of feature selection methods (Methods)
(Additional file 1: Table S6). This resulted in 15 attri-
butes, involving seven of the ChIP-Seq signals consid-
ered (Additional file 1: Figure S2), which best separate
inclusion and skipping events. Among the most inform-
ative attributes, we found HP1la and CTCF downstream
of the alternative exon in relation to inclusion events;

and AGO1, H3K36me3 and RNAPII in relation to skip-
ping events. These attributes show significant relative
differences in chromatin signal densities (z-scores) be-
tween exon inclusion and skipping (Figure 2A). In par-
ticular, we found that AGO1 in the downstream window
(w5) associates with the direction of the splicing change,
that is, splicing events with an increase of AGOL1 signal
between MCF7 and MCF10 downstream of the alterna-
tive exon were more frequently associated with skipping
(Figure 2A). We also found an increase of HP1a in the
downstream and upstream regions associated with inclu-
sion (Figure 2A). The downstream window (w5) showed a
different pattern in association with skipping for the
AGOL1 signal and in association with inclusion for the
HPla signal (Figure 2A). Similarly, an increase of CTCF
on the downstream intron (I2) was related to inclusion
(Figure 2A). On the other hand, for H3K36me3 and RNA-
PII we found the opposite pattern: an increase on the
flanking regions of the regulated exon correlated with
skipping (Figure 2A). In contrast, the relative enrichments
of these signals in a set of non-regulated exons are cen-
tered on zero and distributed between inclusion and skip-
ping events (Additional file 1: Figure S2). Although 5metC
was selected as informative by the feature selection proce-
dures (Methods), the signal density around the regulated
events and non-regulated events did not show clear differ-
ences (Additional file 1: Figure S2). Using the 15 most in-
formative attributes (Figure 2A), we used cross-validation
with an Alternate Decision tree (ADTree) classifier to ob-
tain 606 (68.552%) correctly labeled events (282 inclusion,
324 skipping) (Additional file 1: Table S7 and Additional
file 2) from the original 884 events (receiver operating
characteristic (ROC) area 0.735, precision 0.687, recall
0.686) (Figure 2B). Moreover, using only the top features
related to the CTCE, HP1a and AGOL1 signals we recover
about 58% of the events correctly (ROC area 0.6, preci-
sion = 0.58, recall = 0.58) (Additional file 1: Table S7).
Furthermore, features related to the total H3 signal did
not provide any predictive value and normalization of
the histone modifications by total H3 did not affect the
results (Methods). Our results indicate that a considerable
number of alternative splicing events can be explained by
the differences in the relative enrichment of histone marks
and the factors CTCF, HP1a and AGO1 (Additional file 1:
Figure S2).
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Table S7). ADTree, Alternate Decision tree.

Figure 2 Chromatin-based RNA-map. (A) Each boxplot represents the relative change in signal densities as z-score values correlated with
inclusion or skipping exons for the selected attributes, separated according to whether they show enrichment in skipping exons (red) or in
inclusion exons (blue). The plots show the Kolmogorov-Smirnov test P-value for the comparisons of the distributions for each attribute. The exon
triplet diagram in the middle shows the regions of the selected attributes (Additional file 1: Table S6). (B) Receiver operating characteristic (ROC)
curves and precision-recall curves for the ADTree model, separated for inclusion (blue) and skipping exons (red). We indicate the average area
under the ROC curve (0.735), precision (0.687) and recall (0.686) for both classes from the 10-fold cross-validation of the model (Additional file 1:

To provide a different view of the chromatin signals in
relation to splicing regulation, we calculated the read
density properties for the most informative ChIP-Seq
features, HP1a and CTCF downstream of regulated exons.
In the region 12, CTCF has significant density enrichment
in included exons and significant depletion in skipped
exons in MCF?7 relative to MCF10, compared with non-
regulated exons (Figure 3A). HP1a shows a similar enrich-
ment and depletion pattern in the region w5 (Figure 3B)
but not as discriminating as with the enrichment attributes
(Figure 2A). We calculated the profiles for the CTCF and
HP1a read densities for regulated exons correctly classified
as skipped and included by the model, first removing those
exons that overlap with the first or second exon in some
transcript of the gene to avoid biases from the transcription
start site (TSS). In MCF7, CTCF shows a higher density
downstream of inclusion events compared with skipping
events (Figure 3C). In contrast, in MCF10 CTCF is present
at similar levels downstream of inclusion and skipped
events, although at a lower density than for MCEF?7 in in-
clusion events (Figure 3D). For HP1a in MCF7 we ob-
served a higher density downstream of included exons
compared with skipped exons (Figure 3C and Additional
file 1: Figure S3A), whereas it is depleted in MCF10 down-
stream of regulated exons (Figure 3D and Additional
file 1: Figure S3). The patterns for inclusion events are
in agreement with the proposed splicing code that
predicts that an increase of CTCF or HPla binding
downstream of exons is linked to increased inclusion
(Figure 2A). On the other hand, skipping events showed
a lack of co-localization of CTCF and HP1la, suggesting
that the splicing modulation by CTCF, RNAPII and his-
tone marks may be strongly influenced by the presence
of HP1a (Additional file 1: Figure S3). The most relevant
feature involving RNAPII corresponds to the region w6,
close to the downstream exon (Figure 2). However, RNA-
PII tends to localize close to regulated exons, more prom-
inently in regions where CTCF and HP1la are present and
in the direction of inclusion (Additional file 1: Figure S3).
In contrast, even though AGO1 was selected as a relevant
attribute in the downstream region (w5), we did not find
much difference in the AGO1 read densities between
skipping and inclusion (data not shown). However, com-
parison of the normalized densities over the w5 region
showed a higher signal of AGO1 in MCF?7 in the direction

of skipping (Additional file 1: Figure S4), consistent with
our previous findings [37]. The fact that AGO1 appears as
a selected feature in the w5 like HP1a but in the opposite
direction of regulation and with a weaker signal suggests
that AGO1 and HPla may antagonize for a limited num-
ber of events.

A possible association of CTCF, HP1a and AGO1 in
splicing regulation

Our results indicate a possible association between the
analyzed proteins in chromatin-mediated regulation of
splicing. We thus decided to further investigate this by
calculating the significance of the overlap between their
binding signals (Methods). Interestingly, we found that
there was a positive genome wide association between
CTCF and HPla, CTCF and RNAPII and 5metC and
HPla (Additional file 1: Table S8). In contrast, we did
not find any association of 5metC with CTCEF, which
agrees with their proposed antagonistic activity [23,43].
Although AGO1 was not found to be strongly associated
with any other signal, we found that 41.8% of AGO1
clusters were overlapping with HP1a, 52.6% with 5metC
and 13.1% with CTCE, whereas only 1.9%, 3.4% and 0.8%
of these signals, respectively, were associated with AGO1
clusters, indicating that AGO1 may be associated specific-
ally with CTCF and HPla but not the other way around
(Figure 4A) (Additional file 1: Table S8). Furthermore, the
association of CTCF and HP1la is recapitulated at intra-
genic regions (CTCF with HPla z-score = 90.791 and
HPla with CTCF z-score = 5.826). This is also supported
by the overlap analysis of clusters. We observed that
CTCEF clusters tend to localize at HP1a cluster positions
and vice versa (Figure 4B). This co-localization is recapitu-
lated at intragenic regions (Additional file 1: Figure S5A).
We also found an association between CTCF and RNAPII
downstream of the included exons (regions w4 and w5)
(CTCEF localizing with RNAPII z-score = 10.20 and RNA-
PII localizing with CTCF z-score = 3.246), consistent with
a CTCF mediated accumulation of RNAPII [23].

Candidate DNA binding motifs for HP1a and AGO1

Although there is evidence for the association of AGO1
and HP1a with chromatin [37,41], specific candidate DNA
binding motifs have not been proposed before. The strong
overlap of these two factors with CTCF binding sites raises
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the question whether AGO1 and HP1a may have specific
binding motifs. Our datasets provide a good opportunity
to test this hypothesis. We thus calculated enriched DNA
motifs in the AGO1, CTCF and HPla cluster sets inde-
pendently (Methods). Due to the high overlap between the
three samples, we assessed the enrichment of heptamers
using all significant non-overlapping clusters, and built
consensus motifs represented as position weight matrices
(PWMs) using both complementary strands (Methods).
As a validation of our approach, we confirmed that the
motif found for CTCF (Figure 5A) coincided with the one

previously reported [44]. For HPla clusters we obtained
an AC-rich motif (Figure 5B), whereas for AGO1 we ob-
tained a motif with the conserved hexamer AGGTCA
(Additional file 1: Figure S5B). Since HP1 proteins bind
methylated H3K9 [40-42], as a further check for the HP1a
motif we decided to test whether H3K9me2 significant
clusters would give rise to a similar motif. We applied the
same method and found for H3K9me2 a short palin-
dromic motif that matches the consensus CWGCWG
(Additional file 1: Figure S5C). Interestingly, this motif in-
cludes CAGCAG and its reverse complement, which
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Figure 4 Association between HP1a and CTCF binding sites. (A)
Graph of significant genome-wide associations between AGOT,
CTCF, HP1q, RNAPII and 5metC binding sites. The black double
arrows indicate the significant associations between HP1a and CTCF,
HPTa and 5metC and CTCF and RNAPII, whereas the directional gray
arrows indicate the significant one-sided associations (Additional

file 1: Table S8). The number beside each arrow indicates the
proportion of clusters (rounded to the closest integer) that overlap
with the sites of the factors connected by the arrow. (B) Mean
densities of HP1a clusters centered at CTCF clusters (blue line),
compared with randomized HP1a clusters (dashed blue line); and
mean densities of CTCF clusters (green line) centered at the HP1a
clusters, compared with randomized CTCF clusters (dashed green
line). Randomized clusters were calculated by relocating each cluster
in an arbitrary new position in the same chromosome, avoiding
satellites, gaps, pericentromeric regions and the overlap with any
other random cluster. AGO1, argonaute 1 protein; CTCF, CCCTC-binding
factor; HP1, heterochromatin protein 1; RNAPII, RNA polymerase II;
5metC, 5-methycytosine.

partly matches the CTCF motif (Figure 5A) and shows a
strong overlap with CTCF clusters (23.5%), but not with
HPla (1.7%) or AGO1 (4.6%) clusters. To further deter-
mine how specific the motifs are, we calculated the
density profiles of the motifs over each set of significant
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ChIP-Seq clusters. The profile of HP1la motif over the
significant clusters indicates that this motif is very spe-
cific (Additional file 1: Figure S6A). The motif recovered
for CTCEF is highly enriched in CTCF clusters but also
over HPla clusters (Additional file 1: Figure S6B). In
contrast, AGO1 motif shows very little specificity, most
likely due to the fact that there are few AGO1 clusters
that do not overlap with either HP1a or CTCF (Additional
file 1: Figure S6C). We further tested whether HP1la or
any of the motifs found were particularly enriched over
H3K9me3 significant clusters. The CTCF motif shows the
highest density over H3K9me2 clusters; whereas HPla
shows the lowest density (Additional file 1: Figure S7).
These analyses suggest that the found binding motif for
HPla may indeed be associated with its binding to DNA.

Conclusions

In this work, we have derived a chromatin code for spli-
cing that involves binding signals for HP1a and CTCEF,
as well as AGO1, RNAPII and histone marks, activity
around regulated exons. Feature selection and cross-
validation shows that this regulatory code is predictive
for nearly 70% of the alternative splicing events regulated
between two cell lines, MCF7 and MCF10, providing fur-
ther evidence for a role of chromatin in the regulation of
alternative splicing. This code also provides evidence for
specific associations of various factors in relation to spli-
cing differences between the two studied cell lines. Our
model shows that AGOL1 activity downstream of alterna-
tive exons correlates with splicing changes in the direction
of skipping in MCF7 compared to MCF10, providing
further indication that AGO1 association with chromatin
could be implicated in splicing regulation [4,21,35,37]. We
also recovered the previously described increased binding
of CTCF binding downstream of inclusion events [23].
Additionally, the density of RNAPII downstream of reg-
ulated exons, which tends to co-occur with CTCF and
HPla, is an informative attribute to predict splicing
change; and a relative increase in the region flanking the
exon correlates with exon skipping in MCF7 compared
to MCF10. The association of the RNAPII density re-
lated to exon definition has been observed before [45]
and there is much evidence supporting a regulation of
alternative splicing associated with RNAPII elongation
rates [19,46,47]. Our results corroborate the importance
of RNAPII occupancy in the exon inclusion or skipping,
and provide directionality in the relation between dens-
ity changes and the pattern of differential splicing be-
tween cell lines.

H3K36me3 also appeared as a relevant mark for splicing
decisions in our model. Several reports have described
H3K36me3 as an exon marker [8-10,48] and there is evi-
dence of higher densities of H3K36me3 at constitutive
exons compared to alternative exons [8,49]. However, the
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opposite pattern has also been described, as for specific
genes an increased density of H3K36me3 has been related
to exon skipping [5,20,50], which agrees with our code.
Since we only analyzed splicing events in genes that do
not change expression, our results imply that the observed
changes in H3K36me3 signal near exon boundaries were
not a consequence of gene expression, and could indeed
correspond to a role in splicing.

Interestingly, we found a strong association between
CTCF and HP1la signals genome-wide and intragenically,
and the activity of both factors correlated with exon inclu-
sion. Besides acting as insulator, CTCF is involved in the
splicing regulation of some exons as an antagonist of
DNA methylation [23] and also works as a barrier for
spreading of heterochromatin [24,25], through which it
can influence RNAPII elongation [26]. Our analyses show
that HP1a binding downstream of the cassette exons, with
the co-localization of CTCE, affects alternative splicing.
HPla belongs to a family of non-histone chromosomal
proteins and is a key player in the transcriptional gene si-
lencing (TGS) pathway [21]. HP1 proteins have already
been linked before to the regulation of splicing by chroma-
tin [21,22,35,39]. In particular, a study published at the
time we had concluded this work also describes a pos-
itional effect on splicing for HP1 proteins, providing fur-
ther evidence of the relevance of the HP1 family in linking
chromatin with RNA processing [39] and giving support
to our model. The same study found that HP1 proteins
could act as mediators between DNA methylation and
splicing for a subset of the regulated events [39]. Although
there have been previous reports of a relation between
DNA methylation and alternative splicing [39,51,52], we
did not find it to be a strong determinant of the splicing

changes between MCF7 and MCF10 cells, indicating that
the HP1-dependent code that we describe is related to a
DNA-methylation independent effect that may be more
prevalent in the investigated cell types.

Even though there is only limited evidence of direct
DNA-binding for HPla [41], we found a consensus
motif associated with the significant HPla ChIP-Seq
signals, which is highly specific to the significant HP1a
ChIP-Seq signals and non-overlapping with the motifs
for CTCE, AGO1 or H3K9me2. HP1 proteins generally
consist of two highly conserved domains. While one of
the domains is known to bind H3K9me, the other one
acts as the interaction interface with other proteins [42].
The two domains are separated by a hinge region of vari-
able length, which has been related to DNA and RNA
binding [42,53]. The found motif may be related to a
sequence-specific interaction of this protein region with
DNA, which may act as a modulator of the interaction of
HP1 with H3K9 methylation. Recent analyses also provide
evidence of HP1 proteins interacting with RNA binding
proteins [39], highlighting their plasticity and central role
in RNA processing regulation linked to chromatin.

We also found a frequent overlap of AGO1 with CTCF
and HPla clusters, but not the other way around. More-
over, we found HPla in the same downstream region as
AGOIL1 but in the direction of inclusion, and regulating a
distinct set of events. Depletion of AGO1 expression can
induce splicing changes in both directions but generally
decreases splicing efficiency [37]. Our analyses show that
AGO1 and the co-localized CTCF and HPla produce
splicing changes in opposite directions. Despite the co-
localization of AGO1 with CTCF and HPla binding
sites, we found a weak but independent binding motif
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for AGOL. Recent analyses have produced candidate bind-
ing motifs for Drosophila [33,36] and mouse [54] Argo-
naute proteins. However, our motif does not resemble any
of these motifs, suggesting a DNA-independent associ-
ation of AGO1 with chromatin [36,37].

Different models to predict the splicing outcome, also
called splicing codes, have been proposed before [55,56],
but these did not include chromatin marks or proteins
that interact with chromatin, such as HP1, AGO1, CTCF
and RNAPII, as described here. Our analyses thus com-
plement these previous descriptions by incorporating
these new determinants of alternative splicing regula-
tion. Although motifs in the pre-mRNA sequence re-
main the main determinants of splicing regulation [56],
our analysis indicates that a considerable fraction may
be influenced by the properties of chromatin. There
have been previous attempts to establish a general rela-
tion between histone marks and splicing regulation
[57-60]. However, a predictive model was proposed in
only one case [57]. Additionally, these approaches ana-
lyzed the relation between chromatin and splicing, look-
ing at one single condition at the time, rather than
comparing two conditions, and exons were classified as
constitutive or alternative based on RNA data from one
single condition, rather than distinguishing those that
are regulated from the non-regulated ones between two
conditions. Our approach has the advantage that, by
comparing two conditions locally, it circumvents the
caveats of comparing genomic regions with different
sequence and structural properties. Moreover, our ap-
proach relates changes of the chromatin signal between
two conditions to the splicing changes of exons between
the same two conditions, which provides a better de-
scriptor of the association between chromatin changes
and splicing regulation.

In summary, we have shown that a chromatin code for
splicing can be defined involving HP1a, CTCF, RNAPII,
various histone marks and AGO1, which can differenti-
ate patterns of skipping, inclusion and non-regulated
exons between two conditions. Additionally, the con-
served motif found for HP1a and the presence of HPla
and AGOL1 in the described splicing code provides fur-
ther support for their involvement in chromatin-related
splicing regulation.

Methods

Datasets

Splicing changes between MCF7 and MCF10 were mea-
sured using a splice junction array (Affymetrix HJAY)
(data available at GSE38864). We considered 1,694 reg-
ulated cassette events with significant change (average
probe fold-change >1.5) in the comparison between
MCF7 and MCF10. Only events from genes that do
not change expression significantly (log,-fold change
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P-value >0.01) and do not overlap with non-regulated
events (see below) were kept, producing 1,134 events,
442 for inclusion and 692 for skipping. Further, in order
to have a balanced training set, we randomly chose 442
events of skipping; hence 442 exon cassette events of
each type (inclusion or skipping in MCF7, compared to
MCF10) were finally selected. As a control, a set of
non-regulated events was selected, defined to be exon
triplets tested on the array from the same host genes as
the regulated events, such that they do not overlap with
regulated events and are negative for splicing regula-
tion according to the array experiments. This resulted
in 1,970 non-regulated events.

ChIP-Seq data for AGO1, total H3, H3K36me3,
H3K9me2, H3K27me3, HPla, 5 methylated cytosine
(5metC) and RNAPII in MCF7 and MCF10 cells were
obtained from GSE56826. For AGO1, we only used data
for the 4B8 antibody for both MCF7 and MCF10 cells
[37]. As control samples we used ChIP-Seq for a non-
specific antibody (immunoglobulin G (IgG)) and spe-
cific controls samples for HPla and 5metC in MCF7
and MCF10 cells (available from GSE56826). Additional
ChIP-Seq data for RNAPII in MCEF7 cells was obtained
from [61] and ChIP-Seq data for CTCF in MCF7 and
MCF10 cells was obtained from [62].

Reads were mapped to the reference genome hgl8
using Bowtie [63] keeping the best unique matches with
at most two mismatches to the reference (-v 2 —best —
strata -m 1). Based on the mean size of the fragments
obtained after sonication for each sample, mapped reads
were extended to 200 nt in the 5" to 3" direction using
Pyicoteo [64,65], except for AGO1 reads, which were
extended to 350 nt. Using BedTools [66] we removed
reads overlapping centromeres, gaps, satellites, pericen-
tromeric regions and the ‘Duke excluded’ regions, which
are regions of low mappability defined by ENCODE [67].
For each sample, we built clusters with the reads that were
overlapping each other on the genomic coordinates, dis-
carding single-read clusters, using Pyicoteo.

In order to avoid the usage of clusters that are possibly
part of the background signal and not of the real ChIP-
Seq signal, we used the control samples to identify signifi-
cant clusters. As the coverage of reads between samples
and control can be highly variable, in order to estimate
the background level, we considered that each sample is
composed of a number of regions with high coverage,
likely to be significant, and a large number of regions with
low coverage, assumed to be equivalent to the back-
ground [68,69]. Thus, the clusters overlapping in sample
and control were considered, and the number of reads n
for each cluster was measured. The average enrichment
between sample and control in regions with few reads
was then used to define the ChIP to control normalization
factor (CNF):
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where ngs) and nl(»c) are the number of reads in sample

and control, respectively, over each one of the N regions
of overlap between sample and control with <10 reads
selected to determine the background. The CNF was then
used to calculate a normalized Bayesian P-value to esti-
mate the significance of the number of reads in the sample
cluster, defined as the conditional probability inferred
from control number of reads 7 in a given region given
a number of sample reads, #* in the same region [70]:

n@n®1(1 + CNF),,(C)+,,<S>+1

P <n(c) |n(s) ) = (CNF)"(C)

For each sample, in order to get the maximum num-
ber of significant clusters, we selected the clusters
below a different P-value cut-off: AGO1 and H3K9me2
(P-value <0.05), H3K27me3, H3 and H3K36me3 (P-
value <0.01), HP1a (P-value <0.001), 5metC (P-value <le-3),
RNAPII (P-value <le-3), CTCF (P-value <le-3). For sub-
sequent analyses, only reads overlapping these significant
clusters were used. The final number of significant clus-
ters used for the calculations in MCF-7 (MCF-10) is
14,206 (25,098) AGOL1 clusters, 232,089 (346,477) CTCF
clusters and 407,133 (436,248) HP1a clusters.

To build the predictive model, 15 regions around each
cassette event were considered, consistently with Ensembl
annotation (version 54, assembly hg18) [71]. For each re-
gion and sample, the read density was calculated using the
RPKM (reads per kilobase per million of mapped reads)
[72], and the relative enrichment z-score was calculated
using Pyicoteo [64]. To test possible effects of nucleosome
positioning, all histone modifications were normalized by
total H3 signal, but no differences were observed in the
results with or without this normalization. The described
model does not include this normalization.

Pairwise correlation heatmaps were obtained by calcu-
lating Pearson correlation between z-scores for every
pair of attributes for each subset of triplets: with E2 ei-
ther included, skipped or non-regulated, according to
the splicing array. The processed datasets are available
in a publicly available Biomart [73] instance at [74], where
the information for each event is linked to an Ensembl
gene and transcript IDs to facilitate the cross queries with
Ensembl databases. Datasets can be exported in various
formats, including ARFF (attribute-relation file format),
which can be uploaded directly into the WEKA system
[75] for Machine Learning analyses.

Accuracy testing and attribute selection
Three attribute selection methods were applied: Infor-
mation Gain (IG), Correlation Feature Selection (CES)
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and Wrapper Subset Evaluator (WSE). IG is defined as
the expected reduction in entropy caused by partitioning
the examples according to one attribute [76], thus the
higher the IG value, the better the attribute can separate
skipping and inclusion classes. On the other hand, CFS
works by testing the correlation of attributes against the
class values (inclusion and skipping) and removing those
that have high redundancy (high correlation) between
them [77]. In WSE, subsets of attributes are tested itera-
tively using a 10-fold cross validation and the space of
all possible subsets is explored heuristically, such that
only those subsets that perform above an optimal thresh-
old are scored as informative [78]. Thus, the WSE method
gives the frequency at which each attribute is selected in
the optimization procedure. For WSE we used a Genetic
Search algorithm to explore different combinations of
attributes and an ADTree [79] to evaluate the attributes.
Repeated runs of WSE did not change the resulting top
attributes. Attributes selected by WSE and CFS at fre-
quencies >50% and a position in the IG ranking in the
top 50% were finally selected. When the selected attri-
butes corresponded to the same ChIP-Seq signal in
overlapping regions, the one with the highest IG was se-
lected. In this way, a minimal set of non-redundant attri-
butes with optimal performance was selected (Additional
file 1: Table S6).

For each of the models the accuracy was calculated
using 10-fold cross validation. In this procedure, the
datasets are split into training and testing sets in 10
different ways. Testing sets were chosen such that each
event is predicted just once. The accuracy was measured
as the average value of the sensitivity and specificity over
all 10 splits. We also reported the number of events, ei-
ther skipped or included, that were correctly predicted
by the model. Since our attributes were expected to be
dependent, we applied two different classifiers that were
based on dependencies to build the model and test the
predictive power of our attributes: a Bayesian Network
(BN) [80] and an ADTree [81]. A BN consists of the com-
bination of conditional probabilities between attributes to
define a network, where each attribute has a probability
distribution given by the conditional probability on one or
more parent attributes. ADTree is a classification method
based on binary decision trees, using a voting system to
combine the output of individual tree models. Each indi-
vidual model has a tree structure, where each node of the
tree represents a binary partition. At every partition a test
is performed for every attribute and the test set that maxi-
mizes the entropy-based gain ratio [78] is selected, leading
to a tree where every leaf contains instances from one
class when there is no over-fitting. Individual trees are
combined into a single tree using a voting system to
weight the contribution from the multiple binary tests into
a final classification, which is represented in the leaves.



Agirre et al. BMC Biology (2015) 13:31

The ADTree has been shown before to be a good learn-
ing algorithm for genetic regulatory response [81]. Each
model was built with a given number of attributes, for
our initial model 120 attributes were used (BN model
area under the ROC curve = 0.67 and ADTree model
area under the ROC curve = 0.661). The final model
was built only with the 15 selected attributes, with an
accuracy for the BN model of area under the ROC
(AUC) = 0.71, recall = 0.671, precision = 0.673; and for
the ADTree model of AUC = 0.735, recall = 0.686, pre-
cision = 0.687. Based on the results the ADTree model
was selected.

Cluster association and motif analysis

To study the significance of the co-occurrence of the dif-
ferent ChIP-Seq clusters in specific regions we used the
block bootstrap and segmentation method developed in
the Encode project [82]. Using a list of genomic regions
and two lists of features mapped to them, this method
provides a z-score corresponding to the number of stand-
ard deviations of the observed overlap compared to the
random expected overlap. We ran version 0.8.1 of the
script Block Bootstrap and Segmentation method with pa-
rameters -r 0.1 -n 10,000, where r is the fraction of each
region in each sample and n is the number of bootstrap
samples used. As input for this method, ChIP-Seq clusters
and mappable genome regions were used.

The motif analysis was carried out in the following
way. Given a sample set S of N sequences and a control
set S@ of N sequences, the number of times #;, that
each 7-mer a appeared in each sequence i was calcu-
lated. Likewise, for the control set the number of occur-

0 . .
rences rzl( u) of each 7-mer a in each sequence i, was also

calculated. The expected density d'% of each 7-mer a
was then calculated as the ratio between the total num-
ber of occurrences in the control set over the total se-
quence length of the control set:

> ma

™
ies©

where ZEO) is the length of each sequence in the control
set. For each sequence i in the sample set and each 7-mer
a, it was then recorded whether the observed 7-mer
count, 1, ,, is greater than the expected count, dg)) l;:

diﬂ =1 if Nig > d;o)li
dis =0 otherwise

Similarly, for the counts in the control set:
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Table 1 Contingency matrix for the enrichment analysis
of a 7-mer a

Dataset More than expected Less than expected
S (sample) Z dig N*Z dia
ieS ieS
5@ (control) > d%, NO-3" 0,
jies© jes(®
(0) _ e (0) 0)7(0
dy) =1 if njy) >dP1,
d? =0 otherwise

ia

The sum of the d;, values over the sequences i repre-
sent the number of sequences for which the 7-mer a has
an observed count greater than expected. Thus, for each
7-mer, the odds-ratio (7-mer score) and corresponding
P-value were obtained by performing a Fisher test (one-
tailed) with these sums for the sample and control sets
(Table 1).

This motif analysis was carried out independently for
CTCF, AGO1 and HPla clusters. In order to build the
consensus motifs, a procedure similar to [83] was carried
out. First, the 200 bp sequence centered at the middle
position of the cluster was extracted. Only clusters with
at least two significant 7-mers were kept, resulting in 401
regions for AGO]1, 4,219 for CTCF and 573 for HPla. A
sequence logo and a position frequency matrix (PFM) were
obtained with MEME [84] with options ‘-dna -revcomp
-zoops -maxw 12 This produced a motif of length 12
for CTCF and HP1la and length 8 for AGO1. The PFMs
(P <0.0005) matched at their respective summit: 15,486
(38.6%) of AGO1, 42,803 (44.4%) of CTCF and 139,176
(34.2%) of HP1a clusters.

Additional files

Additional file 1: Supplementary_material. Contains all the
supplementary figures and tables.

Additional file 2: Predicted_events_ENSG. Supplementary data file
with the predicted inclusion and skipping events. Events are provided
with the coordinates of the three exons that compose the events (hg18),
the regulation label (inclusion and skipping) and gene identifiers from
ENSEMBL54.
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