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Abstract

Background: Increases in biological complexity and the origins of life’s hierarchical organization are described by
the “major transitions” framework. A crucial component of this paradigm is that after the transition in complexity or
organization, adaptation occurs primarily at the level of the new, higher-level unit. For collective-level adaptations
to occur, though, collective-level traits—properties of the group, such as collective size—must be heritable. Since
collective-level trait values are functions of lower-level trait values, collective-level heritability is related to particle-
level heritability. However, the nature of this relationship has rarely been explored in the context of major transitions.

Results: We examine relationships between particle-level heritability and collective-level heritability for several
functions that express collective-level trait values in terms of particle-level trait values. For clonal populations,
when a collective-level trait value is a linear function of particle-level trait values and the number of particles
per collective is fixed, the heritability of a collective-level trait is never less than that of the corresponding
particle-level trait and is higher under most conditions. For more complicated functions, collective-level heritability is
higher under most conditions, but can be lower when the environment experienced by collectives is heterogeneous.
Within-genotype variation in collective size reduces collective-level heritability, but it can still exceed particle-level
heritability when phenotypic variance among particles within collectives is large. These results hold for a diverse
sample of biologically relevant traits.

Conclusions: Rather than being an impediment to major transitions, we show that, under a wide range of conditions,
the heritability of collective-level traits is actually higher than that of the corresponding particle-level traits. High levels
of collective-level trait heritability thus arise “for free,” with important implications not only for major transitions but for
multilevel selection in general.
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Background
Major transitions, or evolutionary transitions in individual-
ity, are a framework for understanding the origins of life’s
hierarchy and of biological complexity [1, 2]. During such a
transition, a new unit of evolution emerges from interac-
tions among previously existing units. This new unit, or
collective, has traits not present before the transition and
distinct from those of the units that comprise it (particles;
see [3] for an in-depth discussion of collective-level traits).
These collective-level traits are potentially subject to selec-
tion. Over the course of the transition, the primary level of
selection shifts from the particle (lower-level unit) to the
collective (higher-level unit), for example, from cells to
multicellular organisms or from individual insects to eu-
social societies.

Evolution by natural selection requires heritable vari-
ation in phenotypes that affect fitness at the level at
which selection occurs [4, 5]. The breeder’s equation of
quantitative genetics shows that heritability and strength
of selection contribute equally to the adaptive response
(see the “Analytical model” section below). When a
collective-level trait is exposed to selection, it is
collective-level heritability (the heritability of the
collective-level trait) that determines the magnitude of
the response. Collective-level heritability of traits is thus
necessary for collective-level adaptations, but the emer-
gence of collective-level heritability during a major transi-
tion has often been assumed to be difficult. For example,
Michod considers the emergence of collective-level herit-
ability through conflict mediation a crucial step in major
transitions [2, 6, 7]. Simpson says that “From the view of
some standard theory, these transitions are impossible,” in
part because particle-level heritability greatly exceeds
collective-level heritability [8].
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Major transitions can be conceptualized as a shift
from MLS1 to MLS2, in the sense of Damuth and
Heisler [5], as in Okasha [9] (see also Godfrey-Smith
[10], Shelton and Michod [11]). In MLS1, properties
of the particles are under selection; in MLS2, it is the
properties of the collectives. We follow Okasha [9] in
referring to the lower-level units in a transition as
‘particles’ and the higher-level units as ‘collectives.’ Al-
though our biological analogies are presented in terms
of cells as particles and multicellular organisms as
collectives, in principle our model could be extended
to any pair of adjacent levels.
According to Michod [6], “…the challenge of ETI [evo-

lutionary transitions in individuality] theory is to explain
how fitness at the group level in the sense of MLS2
emerges out of fitness at the group level in the sense of
MLS1.” But fitness, or selection, is only half of the
breeder’s equation. Predicting the response to selection
requires an estimate of heritability.
Whether or not collective-level fitness in MLS2 is a

function of particle-level fitness is a matter of some
disagreement (for example, Rainey and Kerr say
no [12]). However, collective-level phenotypes must be
functions of particle-level trait phenotypes, unless we
accept strong emergence, a philosophical position tan-
tamount to mysticism [13]. The function may be com-
plex and involve cell-cell communication, feedbacks,
environmental influences, etc., but it is still a function
that is, in principle, predictable from particle-level trait
values.
Nevertheless, the relationship between the heritability

of particle-level traits and that of collective-level traits
has rarely been considered in the context of major tran-
sitions, leading Okasha [14] to wonder, “Does variance
at the particle level necessarily give rise to variance at
the collective level? Does the heritability of a collective
character depend somehow on the heritability of particle
characters? The literature on multi-level selection has
rarely tackled these questions explicitly, but they are
crucial.” Similarly, Goodnight [15] says, “...we really do
not have a good understanding of what contributes to
group heritability, how to measure it, or even how to de-
fine it.”
While the role of selection has often been consid-

ered in the context of major transitions, the role of
trait heritability has been relatively neglected. We
examine relationships between particle-level heritabil-
ity and collective-level heritability for several func-
tions that express collective-level trait values in terms
of particle-level trait values. For the simplest (linear)
function, we derive an analytical solution for the rela-
tionship. For more complex functions, we employ a
simulation model to explore the relationship over a range
of conditions.

Results
Analytical model
There are several ways to estimate heritability, the propor-
tion of phenotypic variation explained by genetic vari-
ation. If the strength of selection is known, heritability can
be estimated by back-calculating from the breeder’s equa-
tion: R = h2S, where R is the response to selection, S the
selection differential, and h2 the narrow-sense heritability
(i.e., the proportion of phenotypic variation explained by
additive genetic variation). This can be rearranged as h2 =
S/R. Another method is to compare parent and offspring
trait values: the slope of the parent-offspring regression is
an estimator of heritability [16]. We use the latter method
in the simulations described in the next subsection.
Since heritability can be defined as the proportion of

phenotypic variance explained by genetic variance, one
method of estimation is to partition total variance into
its components using an analysis of variance. We em-
ploy this approach in an analytical model to derive the
relationship between the heritability of a collective-level
trait and that of the particle-level trait from which it
arises. For the sake of tractability, we begin with the sim-
plest case, assuming that the size (number of particles)
of collectives is fixed and that the collective-level trait
value is a linear function of the particle-level trait values.
We further assume that reproduction is asexual, so the
proper measure of heritability is broad-sense heritability,
H2, which describes the proportion of phenotypic vari-
ation explained by all genetic variation [17].
We imagine a population in which collectives are made

up of particles and genetically distinct clones are made up
of collectives. As a concrete example, we can think of a
population of undifferentiated volvocine algae, such as
Gonium, in which case the particles are cells and the col-
lectives are colonies. Because of asexual reproduction,
many genetically-identical collectives may comprise a
clone. Genetic variation among clones may arise through
mutation or because the population is facultatively sexual,
in which case these results will only hold for evolution
within the asexual phase (in the Gonium example, during
the summer bloom that precedes autumn mating and
winter dormancy).
Broad-sense heritability is the ratio of genetic variance

(VG) to total phenotypic variance (VP), estimated as the ra-
tio of among-clone variance to total phenotypic variance
[17]. Inherent in this concept is that genetically identical in-
dividuals are not always phenotypically identical; VP in-
cludes both genetic and non-genetic variation. Non-genetic
variation can arise from maternal effects, environmental
(including microenvironmental) effects, and random devel-
opmental noise. Phenotypic variation among genetically
identical individuals has been extensively documented, in-
cluding in bacteria [18, 19], unicellular eukaryotes [20],
plants [21], animals [17], and volvocine algae [22].
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We used an ANOVA framework to estimate heritabil-
ity as a ratio of sums of squares. Strictly speaking, herit-
ability is a ratio of variances, not of sums of squares.
However, the ratios of the relevant sums of squares con-
verge to that of the variances as the number of categor-
ies increases, and for all but tiny or genetically uniform
biological populations, the difference between the two
ratios is negligible (see Additional file 1).
The ANOVA approach yields the following ratio of

collective-level heritability, H2
z , to particle-level heritabil-

ity, H2
y , the derivation of which is explained in the

“Methods” section:

H2
z

H2
y

≈
SSAþ SS B=Að Þ þ SS C=Bð Þ

SSAþ SS B=Að Þ : ð1Þ

SSA is the sum of squared deviations from the mean
among clones, SS(B/A) that among collectives within
clones, and SS(C/B) that among particles within collec-
tives. Given the assumptions of the model (linear func-
tion, constant particle number, clonal reproduction),
collective-level heritability is therefore never less than
particle-level heritability (i.e., the ratio of heritabilities is
never less than 1) and is greater unless SS(C/B) = 0, in
other words, unless particles within each collective have
identical phenotype. Although we have derived this rela-
tionship assuming that the collective-level trait value is
the average of particle-level trait values, the result holds
for any linear function.
The results of the analytical model hold for all but tiny

and/or extremely genetically depauperate populations.
For example, for a population comprised of ten clones
each with ten collectives, the approximation differs from
the true value by less than 1%. The number of particles
within a collective does not play a role, so our results
are relevant even early in a major transition, when the
collectives are likely to be small. For most real biological
populations, the difference between the true heritability
and the sums of squares approximation will be negligible
(see Additional file 1 for a simple numerical example).

Simulation model
The correspondence between particle-level and collective-
level trait values is likely to be more complicated than a
linear relationship for many interesting and biologically
relevant cases. Here, we explore more complicated trait
mapping functions using a simulation model. In this
model, we consider two sources of non-genetic effects on
particle phenotype (Fig. 1), each of which should lower
the heritability of both particle- and collective-level traits.
The first is intrinsic reproductive stochasticity in particle
phenotype, analogous to developmental instability [23]. In
the model, we determine the phenotype of daughter cells
by sampling from a distribution centered on the parent’s

genetic mean, with standard deviation σ. As shown in the
analytical model above, by averaging out this variation,
collectives can gain a heritability advantage over cells.
Our simulation also considers the phenotypic effects

of environmental heterogeneity. Here, we model collec-
tives as independently experiencing different environ-
mental conditions that affect the phenotypes of all cells
within them in the same manner. To extend the bio-
logical analogy offered above, Gonium colonies growing
near the surface of a pond (where light and CO2 are
abundant) may form colonies with larger cells than clo-
nemates near the bottom. We implemented this in our
model by assigning a size modifier, drawn from a normal
distribution centered on 1 with standard deviation σ′, to
each collective. We then multiplied the phenotype of
each particle within the collective by this modifier. This
source of phenotypic heterogeneity should reduce the
heritability of collectives more than particles, simply be-
cause collectives experience a relatively higher frequency
of stochastic events than particles do (each collective
gets assigned a different size multiplier, but every par-
ticle within that collective experiences the same size
multiplier).
We examine the effect of each of the above sources of

phenotypic variation independently for the example of
cells (particles) within nascent multicellular organisms

Fig. 1 Two non-genetic modifiers to cell phenotype. There are two
non-genetic influences on particle phenotype (cell size in this example)
in our model: developmental instability, a stochastic effect that varies a
particle’s phenotype from its genetic mean (with standard deviation σ),
and environmental effects, which modify the phenotype of all particles
in a collective by the same amount (with standard deviation σ′)
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(collectives). For a linear relationship, collective size is
simply the sum of the sizes of cells within the collective.
For both cells and collectives, heritability is assessed by
calculating the slope of a linear regression on parent and
offspring phenotype [16]. In this simple case, mean
collective-level heritability is always greater than or
equal to cell-level heritability. Only when σ = 0 (i.e.,
when all cells within a collective have identical pheno-
type) are cell- and collective-level heritability equal, in
agreement with the analytical model. Greater develop-
mental instability for cell size increases the advantage of
collective-level heritability over cell-level heritability
(Fig. 2a). Larger collectives, which average out cellular

stochasticity more effectively, experience a greater in-
crease in heritability than smaller collectives (Fig. 2a).
Note that the simulations run in Fig. 2a reflect a very
patchy environment in which environmental effects on
cell size within collectives are large (σ′ = 0.25). While
our model is not explicitly spatial, when σ′ is high, dif-
ferent collectives experience different environmental ef-
fects on their mean cell size, simulating the effects of a
patchy environment. Increasing the magnitude of these en-
vironmental effects on cell size diminishes the difference in
heritability between collectives and cells, but mean collect-
ive-level heritability is still greater than cell-level heritability
for all parameter combinations (Fig. 2b). The simulations
yielding Fig. 2a, b are provided as Additional files 2 and 3,
respectively.
The volume of the cellular collective (Figs. 2 and 3a),

which is simply the sum of the cell volumes within it,
represents the simplest function mapping cellular to
multicellular trait values. We now consider more compli-
cated nonlinear functions relating cellular to multicellular
trait values, some of which have biological relevance to
the evolution of multicellularity.
The first nonlinear collective-level trait we consider is

its diameter. Large size is thought to provide a key bene-
fit to nascent multicellular collectives when they become
too big to be consumed by gape-limited predators [24,
25]. For a collective that is approximately spherical, the
trait that actually determines the likelihood of being
eaten is diameter, which is therefore an important com-
ponent of fitness. For geometric simplicity, we assume
that the cells within the collective are pressed tightly to-
gether into a sphere. Collective volume (Fig. 3a) and
diameter (Fig. 3b) exhibit similar dynamics, with
collective-level heritability always exceeding cell-level
heritability and being maximized under conditions of
strong cell size stochasticity (high σ) and no environ-
mental heterogeneity (low σ′).
Next, we consider swimming speed as a function of

cell radius. We based this simulation on the hydro-
dynamics model of volvocine green algae derived by
Solari et al. [26]. For simplicity, we modeled 32-celled,
undifferentiated collectives (GS colonies in [26]), which
would be similar to extant algae in the genus Eudorina.
In this model, the swimming force of cells is independ-
ent of cell size, so, as cells get larger, the collective will
become heavier (more negatively buoyant) without a
corresponding increase in total swimming force, and
therefore, its upward swimming speed will decrease.
Thus, upward swimming speed is a monotonically de-
clining function of cell radius (Fig. 3c inset), unlike the
functions for volume and diameter (Fig. 3a, b insets),
both of which are monotonically increasing. Neverthe-
less, the general behavior of heritability is very similar to
the previous ones, and for a wide range of parameter

Fig. 2 Collective-level heritability of size is greater than particle-level
heritability for size. In a, we hold the effect of the environment fixed
(standard deviation σ′ = 0.25) and vary the degree of developmental
instability for particle size σ: 10− 4 (purple), 0.0625 (blue), 0.125 (green),
0.1875 (yellow), 0.25 (red). In the absence of developmental instability
for size, collective and cell-level heritabilities are identical. Greater
developmental instability increases relative collective-level heritability.
b Here, we hold developmental instability fixed at σ = 0.25, and vary
between-collective environmental effects on cell size from σ′ = 10− 4

(purple) to 0.25 (red). When developmental instability is nonzero, larger
collectives improve collective-level heritability. We ran ten replicates of
each parameter combination and simulated populations for nine
generations of growth
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values, the collective-level trait has a higher heritability
than the cell-level trait (Fig. 3c).
Next, we consider a function describing a collective’s

survival rate in the presence of a predator that can only
consume collectives below a certain size. We calculated
the survival rate (c) as a logistic function of the collective’s
radius, effectively assuming that predation efficiency drops
off quickly when collectives reach a threshold size (Fig. 3d
inset). As with the previous functions (Fig. 3a–c),
collective-level heritability is greater than cell-level

heritability for much of the trait space and is maximized
under conditions of high cellular stochasticity (σ) and low
environmental heterogeneity (σ′; Fig. 3d).
Finally, we consider the case in which the simplifying

assumption of constant cell number does not hold. In-
stead, the number of cells per collective fluctuates
around the genetic mean N . In this case, each collective
reproduces two new collectives, but the number of cells
per new collective is a random variable drawn from a
normal distribution with mean N and coefficient of

Fig. 3 Relative heritability of various collective-level traits to cell-level heritability for size. Here, we examine the heritability of four multicellular
traits that depend on the size of their constituent cells, relative to cellular heritability for size. The relationship between the size of the cells within
collectives and the multicellular trait are shown as insets. We consider three biologically significant traits with different functions mapping the size
of cells within the collective onto collective phenotype. The heritability of collective size (a) and diameter (b) is always higher than cell-level
heritability for size and is maximized when cellular developmental noise is greatest and among-collective environmental effects are smallest
(lower right corner). We modeled swimming speed (c) based on the model of Solari et al. [26] for volvocine green algae. We also considered
survival rate under predation as a logistic function of radius (d). Like a and b, collective-level heritability is highest relative to cell-level heritability
when environmental heterogeneity is minimal. Pink contours denote relative heritability of 1. In these simulations, we consider 32 cell collectives
grown for seven generations. The colormap denotes collective-level heritability divided by cell-level heritability for size across 1024 σ, σ′ combinations
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variation CVN (the coefficient of variation for a normal
distribution is the ratio of standard deviation to the
mean). We chose to represent variation in the number
of cells per collective as CVN instead of standard devi-
ation so that the scale of variation would not change
with the size of the collective.
Variation in cell number, unlike the developmental and

the environmental variation, does not affect the heritabil-
ity of cells, only that of collectives. Therefore, we expected
that increasing CVN would decrease the ratio of
collective-level to cell-level heritability. The simulation
shows that the CVN has a strong effect on collective-level
heritability (Fig. 4). As CVN increases, the ratio of collect-
ive- to cell-level heritabilities decreases, falling below one
when the magnitude of σ is similar to or smaller than that
of CVN (Fig. 4).

Discussion
When particles (cells, for example) first form collectives
(multicellular colonies, for example), traits inevitably
come into being that did not previously exist [3]. Some
such traits, such as collective size, will be simple functions
of particle-level traits; others will be more complex func-
tions. We are interested in how these new collective-level
traits respond to selection, and the breeder’s equation tells
us that the response is proportional to the trait’s heritabil-
ity (for a given strength of selection). We can predict that
heritability if we know two things: the heritability of the

underlying individual-level trait and relationship between
particle-level and collective-level heritability. Estimating
the former is straightforward; if we can define the latter,
we can in principle predict the efficacy of selection on the
new trait.
Using a quantitative genetics framework, we have de-

rived an analytical solution for the relationship between
particle-level and collective-level heritability in clonal pop-
ulations for a limited case. When particle number is con-
stant and the collective-level trait value is a linear function
of the particle-level trait values, the organismal heritability
turns out to be a simple function of the cell-level heritabil-
ity. In contrast to claims that particle-level heritability is
always higher than collective-level heritability (e.g., [8]),
we have shown that collective-level heritability is higher
over a wide range of conditions. Because this result de-
pends on the number of clones and the number of col-
onies within a clone, it may not hold for very small
populations or those with little genetic variation. This is
not a major limitation, though, since tiny, genetically
homogeneous populations are unlikely to be the ones ex-
periencing selectively driven evolutionary transitions in
individuality.
This analytical result is a step toward understanding

the relationship between heritabilities at two adjacent
hierarchical levels, but the assumptions of constant par-
ticle number and linear function are restrictive. The
simulation model shows that the results are somewhat

Fig. 4 Relative heritability of collective size to cell size when the number of cells per collective varies. When the coefficient of variation for cell
number per collective (CVN) is low, collective-level heritability is always higher than cell-level heritability, but this advantage is undercut by increased
variation in cell number. The ratio of collective- to cell-level heritability is maximized when developmental variation in cell size (σ) is large and variation
in the number of cells per collective is zero. The pink contour denotes a ratio of collective-level to cell-level heritability of 1. In these simulations, we
consider collectives with a genetic mean of 32 cells grown for seven generations. The colormap denotes collective-level heritability divided by cell-
level heritability for size across 1024 σ, CVN combinations
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dependent on the function relating the trait values at the
two levels. However, these functions were chosen to be
diverse, and the behavior of the relative heritabilities is
nevertheless qualitatively similar, increasing with cellular
developmental variation (σ), decreasing with environ-
mental heterogeneity (σ′), and exceeding 1 for most of
the parameter space.
Of course, we have not (and cannot) comprehensively

explored the universe of possible functions relating
collective-level traits to particle-level traits. What we
have done is explore a small sample of this space, with
functions ranging from extremely simple (volume) to
somewhat more complex (swimming speed, survival
under predation). We do not claim that the high herita-
bilities estimated for these collective-level traits would
apply to all such traits, and a full accounting of possible
functions is beyond the scope of this (or any) study. Ra-
ther, we have shown that for at least some such func-
tions, the resulting collective-level traits can have high
heritability, and thus be altered by selection, early in an
evolutionary transition in individuality.
All four of the collective-level traits in the simulation

models are potentially biologically relevant. Volume and
diameter are both aspects of size, which can be an im-
portant component of fitness both in evolutionary tran-
sitions in individuality [27] and in life history evolution
[28]. Swimming speed is a measure of motility, which
has selective consequences for a wide range of organ-
isms, including many animals and microbes. For plank-
tonic organisms, a positive upward swimming speed
provides active control of depth, allowing some control
over light intensity (for autotrophs) and prey abundance
(for heterotrophs). Survival under predation obviously
has important fitness implications for many organisms,
and both theoretical and experimental evidence impli-
cate predation as a possible selective pressure driving
the evolution of multicellularity. Kirk, for example, sug-
gests that a “predation threshold” above which algae
are safe from many filter feeders may have driven the
evolution of multicellularity in the volvocine algae [29].
Microbial evolution experiments in the algae Chlorella
and Chlamydomonas have shown that predation can
drive the evolution of undifferentiated multicellular
clusters [30–32].
In our simulations, we examined the effects of three

independent sources of phenotypic variation affecting
the relative heritability of particle and collective-level
traits. Stochastic variation in cell size around the clone’s
genetic mean (σ) reduces the absolute heritability of cells
and collectives by introducing non-heritable phenotypic
variation. By averaging across multiple cells, however,
collectives reduce the effects of this phenotypic vari-
ation, providing them with a relative heritability advan-
tage over cells.

We also considered the effect of environmental het-
erogeneity in which all of the cells within a collective are
affected in the same manner (σ’). Collectives are dispro-
portionately affected: each collective is assessed a differ-
ent size modifier, but all of the cells within these
collectives are affected in the same manner. As a result,
collectives experience n-fold more stochastic events
(where n is the number of cells per collective), which re-
duces their heritability relative to cells. The influence of
these sources of variation is evident in the contour plots
of Fig. 3: the relative heritability of collectives to cells is
maximized when the cellular stochastic variation is high
and environmental heterogeneity low (lower right corner
of the plots).
Finally, we considered variation in the number of par-

ticles per collective. Such variation substantially reduces
the heritability of a collective-level trait. Even with rea-
sonably large variation in collective size, though, the
collective-level trait retains most of the heritability of
the particle-level trait on which it is based (for example,
~ 55% at a CVN in particle number of 0.25).
A large number of previous studies have addressed herit-

ability in the context of multilevel or group selection. Her-
itability above the individual level has been called group
heritability (e.g., [33]), populational heritability (e.g., [34]),
community heritability (e.g., [35]), and heritability of the
family mean [16]. These prior treatments differ from ours
in one or more of the following respects: they are con-
cerned with the evolution of individual-level traits rather
than group level traits (particle- rather than collective-level
in our terminology), are based on MLS1 rather than MLS2
models, and are focused on narrow-sense rather than
broad-sense heritability. Furthermore, few previous studies
have addressed these questions in the context of the major
transitions. Without attempting a comprehensive review,
we summarize several such studies, and important differ-
ences from our own, below.
Queller [33] presents a useful reformulation of the

Price equation for selection at two levels:

ΔG ¼ Sbh
2
b þ Swh

2
w;

in which ΔG is the change in average trait value, Sb and
Sw are the selection differentials between collectives and
within collectives, respectively, and h2b and h2w are the
heritabilities of the collective-level and individual-level
traits, respectively. This formulation partitions the re-
sponse to selection on a particle-level trait into within-
and among-collective change, but the focus is still on
particle-level traits. Our focus is on the evolution of
collective-level traits. In the terminology of Damuth and
Heisler [5], our focus is on MLS2, while Queller’s is on
MLS1. In addition, Queller makes no attempt to derive
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the relationship between collective-level heritability and
particle-level heritability.
Michod and Roze [2] have previously modeled the re-

lationship between particle-level and collective-level her-
itability of fitness during a major transition. However, as
Okasha [14] points out, the heritability of fitness only
ensures that mean population fitness will increase over
time. For selection to result in directional phenotypic
change, it is phenotypes that must be heritable. Further-
more, Michod and Roze focused on within-organism
genetic change. Our models assume that such change is
negligible, as is likely to be true early in a transition,
when collectives (e.g., nascent multicellular organisms)
presumably include a small number of clonally replicat-
ing particles (e.g., cells).
Okasha [36] considers heritability in MLS1 (which he

refers to as group selection 2) and MLS2 (his group se-
lection 1) but does not attempt to derive a relationship
between heritabilities at two levels. Knowing the ratio of
heritabilities is necessary, though not sufficient, to pre-
dict the outcome of opposing selection at two levels and
so has important implications for collective-level traits
that arise from cooperation among particles. The pre-
sumed higher heritability of the particle-level traits has
been seen as a problem for the evolution of cooperation
that benefits the collective [2, 8, 37–39]. Our results
show that this problem does not always exist, though we
would need to know not only the relative heritabilities
but also the relative strengths of selection to predict the
outcome of opposing selection at two adjacent levels.
Several previous papers have shown that group-level

heritability (collective-level heritability in our terminology)
exists and can be substantial. Slatkin [34], for example,
showed that one measure of group-level heritability, frac-
tion of total variance between lines, is substantial both in
an analytical model and in the Tribolium experiments of
Wade and McCauley [40]. Under some conditions, the
between-line variance of a linear trait such as the one we
consider in our analytical model exceeds the within-line
variance.
Bijma et al. [41, 42] and Wade et al. [43] showed that

variance in the total breeding value of a population can
be increased, even to the point of exceeding phenotypic
variance, by interactions among individuals. Our model
does not consider (or require) interactions among indi-
viduals. Further, their model and empirical example are
exclusively concerned with individual-level traits (parti-
cle-level traits in our terminology), for example, survival
days in chickens. They do not estimate group heritability
as such and judge that “it is unclear how this parameter
should be defined or estimated.”
Goodnight [44] addresses the effect of environmental

variance at two scales on the responses to individual and
group selection in Arabidopsis thaliana. Although

Goodnight’s study focused on an individual-level trait (leaf
area, thus an MLS1 scenario) of an obligately sexual or-
ganism (thus narrow-sense heritability), our results
(shown in Fig. 3) showed analogous effects. In both cases,
environmental variation at a fine scale (analogous to our
σ) increased the efficacy of group selection relative to indi-
vidual selection, while environmental variation among
demes (analogous to our σ′) had the opposite effect. Wade
[45] examines a similar case from a theoretical perspective
and finds that increased relative efficacy of group selection
results from environmental variation among particles de-
creasing particle-level heritability.
Goodnight [15] considers the ratio of group-level

heritability to individual-level heritability (in the nar-
row sense) using contextual analysis. Although this
paper does not provide a formula to calculate this ra-
tio, its inequality 5 sets a minimum bound (with the
assumption that selection at the two levels is in oppos-
ition). As in our analyses, Goodnight shows that
group-level heritability can exceed individual-level her-
itability in some circumstances.
Several simplifying assumptions underlie our models,

most importantly the genetic identity of particles within
collectives. This condition only applies to a subset of the
major transitions. Queller recognized two subcategories
within Maynard Smith and Szathmáry’s [1] list of transi-
tions, which he called “egalitarian” and “fraternal” transi-
tions [46]. Briefly, egalitarian transitions involve particles
that may be genetically distinct, or even from different
species, such as the alliance of a bacterium with an Ar-
chaean that gave rise to the eukaryotic cell. Fraternal
transitions are those in which the particles are genetic-
ally similar or identical, such as the origins of eusociality
and of most multicellular lineages.
Because of our assumptions of asexual reproduction

and genetic identity among particles, we cannot generalize
our results to all types of major transitions. Egalitarian
transitions will not normally meet this criterion. A pos-
sible exception is aggregative multicellularity, as seen in
cellular slime molds and myxobacteria, when assortment
is so high that fruiting bodies are genetically uniform. This
is probably uncommon [47], but it does happen [48, 49].
Transitions in which reproduction of particles is obligately
sexual, such as the origins of eusociality, also violate this
assumption.
A better fit for our models is clonal multicellularity,

which is probably the most common type of major tran-
sition. An incomplete list of independent origins of
clonal multicellularity includes animals; streptophytes;
chytrid, ascomycete, and basidiomycete fungi; florideo-
phyte and bangiophyte red algae; brown algae; peritrich
ciliates; ulvophyte green algae; several clades of chloro-
phyte green algae; and filamentous cyanobacteria [50–53].
In most cases, the early stages in these transitions
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probably violated the assumption of uniform particle
number per collective, but our simulations show that our
main results are robust to reasonable violations of this
assumption.
One example that does approximate all of our assump-

tions is that of the volvocine green algae, an important
model system for understanding the evolution of multi-
cellularity. Volvocine algae undergo clonal reproduction
only occasionally punctuated by sex, are small enough
that within-collective mutation probably has negligible
phenotypic effects, and have cell numbers that are under
tight genetic control.

Conclusions
A great deal of work has gone into understanding the se-
lective pressures that may have driven major evolution-
ary transitions. However, heritability is just as important
as the strength of selection in predicting evolutionary
outcomes. We have shown that, given some simplifying
assumptions, heritability of collective-level traits comes
“for free;” that is, it emerges as an inevitable conse-
quence of group formation. Qualitatively, this result
holds across a wide range of parameters and for a di-
verse sample of biologically relevant traits. Collective-
level heritability is maximized (relative to particle-level
heritability) when phenotypic variation among particles
is high and when environmental heterogeneity and vari-
ation in collective size are low. Understanding the emer-
gence of trait heritability at higher levels is necessary to
model any process involving multilevel selection, so our
results are relevant to a variety of other problems.

Methods
Analytical model
Treating particles and collectives separately, the pheno-
type of particle k in collective j within clone i can be
expressed as

yijk ¼ mþ Ai þ Bj ið Þ þ Ck ijð Þ ð2Þ

where m is the mean genotypic value of all clones, Ai is
the deviation of clone i from m, Bj(i) is the deviation of
collective j from the mean of clone i, and Ck(ij) is the de-
viation of particle k from the mean of collective j within
clone i. The model in (2) describes a nested ANOVA
framework, in which the sums of squared deviations
from the population mean are partitioned into among-
clone, among collectives within clone, and within-
collective components. The among-clone component,
the sum of squared deviations of A from m, is

SSA ¼ bc
X

a
i¼1 �yi∙∙− �y∙∙∙ð Þ2 ð3Þ

where a, b, and c are the number of clones, collectives
within a clone, and particles within a collective,

respectively. The sum of squared deviations of collec-
tives within clones is

SS B=Að Þ ¼ c
X

a
i¼1

X
b
j¼1 �yij∙−�yi∙∙

� �2
; ð4Þ

that among particles within collectives is

SS C=Bð Þ ¼
X

a
i¼1

X
b
j¼1

X
c
k¼1 yijk−�yij∙

� �2
; ð5Þ

and the total sum of squares is

SSTy ¼ SSAþ SS B=Að Þ þ SS C=Bð Þ: ð6Þ

Broad-sense heritability of a particle-level trait, H2
y ,

is the ratio of genetic variance to total phenotypic
variance:

H2
y ¼

VGy

VPy

≈
SSA

SSAþ SS B=Að Þ þ SS C=Bð Þ : ð7Þ

We now turn our attention to collective-level traits.
The phenotype of collective j within clone i can be
expressed as

zij ¼ μþ αi þ β j ið Þ; ð8Þ

where μ is the mean genetic value of all clones, αi is the
deviation of clone i from μ, and βj(i) is the deviation of
collective j from the mean of clone i. The sum of
squared deviations of α from μ is

SSα ¼ b
X

a
i¼1 �zi∙−�z∙∙ð Þ2: ð9Þ

The sum of squares among colonies within clones is

SS β=αð Þ ¼
X

a
i¼1

X
b
j¼1 zij−�zi∙

� �2 ð10Þ

and the total sum of squares is

SSTz ¼ SSαþ SS β=αð Þ: ð11Þ
Broad-sense heritability of a collective-level trait, H2

z ,
is the ratio of genetic variance to total phenotypic
variance,

H2
z ¼

VGz

VPz

≈
SSα

SSαþ SS β=αð Þ : ð12Þ

If collective-level trait value is the average of cell-level
trait values, zij = yij∙, �zi∙ ¼ �yi∙∙ , and �z∙∙ ¼ �y∙∙∙ . Thus SSα =
cSSA, and SS(β/α) = cSS(B/A). Substituting into (12),
we get

H2
z ≈

SSA
SSAþ SS B=Að Þð Þ : ð13Þ

The ratio of collective-level heritability to particle-level
heritability is thus

Herron et al. BMC Biology          (2018) 16:145 Page 9 of 12



H2
z

H2
y

≈
SSAþ SS B=Að Þ þ SS C=Bð Þ

SSAþ SS B=Að Þ : ð14Þ

This result holds for any linear function. The substitu-
tion that gets us from (12) to (13) introduces the con-
stant c, which scales both numerator and denominator
and therefore cancels out. Different linear functions
would change the magnitude of the constant relating
SSα to cSSA and SS(β/α) to cSS(B/A) but not the fact
that numerator and denominator are scaled by the same
constant.

Simulation model
All simulation models were carried out using custom Py-
thon scripts. As in the analytical model, particles grow
in clonal collectives, which reproduce by forming two
new collectives, each with as many particles as its par-
ent. The initial population is founded by ten genetically
distinct clones, each of which has a different genetically
determined mean particle phenotype (spaced evenly be-
tween 1 and 2). These are grown for at least seven gen-
erations, resulting in at least 127 collective-level
reproductive events per genotype and 127n (where n is
particle number per collective) particle-level reproduct-
ive events per genotype. For each function, we calculated
the relative heritability of collective- to cell-level traits
for 32-celled collectives across 1024 combinations of σ
and σ′ ranging from 0 to 0.25.
For the simulation of collective volume, we assume a

linear relationship between cell volume and collective
volume, specifically that collective volume is the sum of
cell volumes. The simulation of collective volume is pro-
vided as Additional file 4.
For the simulation of collective diameter, we assume

that the particles within the collective are pressed tightly
together into a sphere, allowing us to calculate collective

diameter as d ¼ 2ð3V4πÞ
1
3 , where V is the sum of the cell

volumes within the collective. The simulation of collect-
ive diameter is provided as Additional file 5.
For the simulation of swimming speed, the function

relating cell radius to upward swimming speed in Solari
et al. [26] (Eq. 4 from [26]) can be simplified to

Vup ¼ f N0:5

3πηw

� �
r−1−

gΔρc 4=3ð ÞN2

3ηw

� �
r2 ð15Þ

where f is average effective upward swimming force per
cell, N is the number of cells per collective, ηw is water
viscosity, r is the average radius of cells in the collective,
and Δρc is the density difference between cells and
water. Additional file 6 provides a more detailed descrip-
tion of the derivation of Eq. 15.

Using the numerical values in Solari et al [26], ηw =
0.01 g/cm·s, Δρc = 0.047 g/cm3, and f = 2.4 × 10−7 g cm/s2,
so

Vup ¼ 0:02
π

r−1−
400
3

r2 ð16Þ

The simulation of swimming speed is provided as
Additional file 7.
For the simulation of survival rate in the presence of a

predator, we calculated the survival rate (c) as a logistic
function of the collective’s radius:

c ¼ 1

1þ e−0:5 0:5rN0:5−25ð Þ ð17Þ

The simulation of survival under predation is provided
as Additional file 8.
For the simulation of variable cell number, we calcu-

lated the relative heritability of size (volume) for collec-
tives and cells across 1024 combinations of σ and CVN

ranging from 0 to 0.25 with a mean cell number (NÞ of
32. The simulation of variable cell number is provided
as Additional file 9.

Additional files

Additional file 1: Ratios of sums of squares as approximations for ratios
of variances. Justifies the use of sums of squares as approximations for
variances and gives a numerical example showing that inaccuracies
introduced by these approximations will normally be negligible.
(DOCX 20 kb)

Additional file 2: Python script for fixed effect of the environment
(standard deviation σ′ = 0.25), and varying degree of developmental
instability for particle size σ. This script generates Fig. 2a. (PY 9 kb)

Additional file 3: Python script for fixed developmental instability (σ = 0.25)
and varying between-collective environmental effects on cell size. This script
generates Fig. 2b. (PY 9 kb)

Additional file 4: Python script for simulation of collective volume. This
script generates Fig. 3a. (PY 13 kb)

Additional file 5: Python script for simulation of collective diameter.
This script generates Fig. 3b. (PY 13 kb)

Additional file 6: Detailed description of the derivation of Eq. 15.
(DOCX 25 kb)

Additional file 7: Python script for simulation of swimming speed. This
script generates Fig. 3c. (PY 13 kb)

Additional file 8: Python script for simulation of survival under predation.
This script generates Fig. 3d. (PY 13 kb)

Additional file 9: Simulation of variable cell number. This script generates
Fig. 4. (PY 12 kb)
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