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Abstract

Background: Microbial contamination poses a major difficulty for successful data analysis in biological and
biomedical research. Computational approaches utilizing next-generation sequencing (NGS) data offer promising
diagnostics to assess the presence of contaminants. However, as host cells are often contaminated by multiple
microorganisms, these approaches require careful attention to intra- and interspecies sequence similarities, which
have not yet been fully addressed.

Results: We present a computational approach that rigorously investigates the genomic origins of sequenced
reads, including those mapped to multiple species that have been discarded in previous studies. Through the
analysis of large-scale synthetic and public NGS samples, we estimate that 1000–100,000 contaminating microbial
reads are detected per million host reads sequenced by RNA-seq. The microbe catalog we established included
Cutibacterium as a prevalent contaminant, suggesting that contamination mostly originates from the laboratory
environment. Importantly, by applying a systematic method to infer the functional impact of contamination, we
revealed that host-contaminant interactions cause profound changes in the host molecular landscapes, as exemplified
by changes in inflammatory and apoptotic pathways during Mycoplasma infection of lymphoma cells.

Conclusions: We provide a computational method for profiling microbial contamination on NGS data and suggest
that sources of contamination in laboratory reagents and the experimental environment alter the molecular landscape
of host cells leading to phenotypic changes. These findings reinforce the concept that precise determination of the
origins and functional impacts of contamination is imperative for quality research and illustrate the usefulness of the
proposed approach to comprehensively characterize contamination landscapes.

Keywords: Contamination, Mycoplasma, Host-microbe interaction, Next-generation sequencing, Non-negative matrix
factorization

Background
In contemporary biology, cell resources are routinely ma-
nipulated via various techniques under a range of condi-
tions. During the course of such manipulations,
eukaryotic cells are potentially exposed to microorganisms
that cause prominent morphological and physiological
changes in their host cells, and such changes often result

in erroneous experimental conclusions [1–3]. In medical
and clinical settings, it is imperative to detect infectious
agents in donated cells to avoid donor-patient disease
transmission [4–6]. Despite a community-wide effort to
introduce precautions to prevent contamination, the per-
vasiveness of unexpected microbial contaminants in publi-
cations has recently been reported [7–9]. This diminished
quality is due, in part, to intrinsic difficulties in assaying
for contamination, e.g., window periods, primer depend-
ency, and drug resistance. As an alternative solution to
these problems, next-generation sequencing (NGS) has
been shown to be an effective approach [6, 10, 11].
Recently, NGS-based studies have intensively ad-

dressed the presence of specific microorganisms (e.g.,
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Mycoplasma) [7–9] and the influence of cross-contamin-
ation caused by exogenous sources (e.g., laboratory re-
agents and sequencer carryover) [12–15]. While
computational methods employing efficient bioinformatics
strategies have greatly contributed to such studies [16–19],
fundamental challenges still remain [20, 21]. One difficulty
in particular is how to deal with sequenced reads that can
be mapped to multiple microbial genomes simultaneously,
which leads to detection uncertainty [17, 21, 22]. In fact,
biological resources contaminated by multiple microorgan-
isms are not uncommon, and the nature of higher intra-
and interspecies sequence similarities in microbial commu-
nities is well known; that is, distinct species belonging to
the same genus have > 97% sequence identity [23]. There
are also species in different genera that are difficult to dis-
tinguish genomically [21]; for instance, the genome se-
quence of Enterobacteria phage phiX174, a routinely used
spike-in species in Illumina sequencing, shares > 95% iden-
tity with the sequences of the G4 and Alpha3 Microvirus
genera [24].
In this study, to improve the certainty of NGS-based

contaminant detection, we developed a computational
approach that rigorously investigates the genomic origin
of sequenced reads. Unlike existing rapid and quasi-
alignment approaches, our method repeatedly performs
read mapping coupled with a scoring scheme that
weights the reads unmapped to the host genome but
mapped to multiple contaminant genomes. This ap-
proach allows estimation of the probability of chance oc-
currence of the detected contaminants. By setting
human as a host and bacteria/viruses/fungi as contami-
nants, we demonstrate the robust performance of the
proposed method by analyzing synthetic data. Next, we
analyzed over 400 NGS samples to profile the contamin-
ation landscape, which yielded a catalog of the microbes
prevalent in the molecular experiments. Furthermore,
we applied a matrix factorization algorithm using our
profiles to infer the functional impacts of contamination,
thus providing a novel window into the complexities of
host-microbe interactions.

Results
Identification and quantification of host-unmapped
microbial reads
Our first goal was to extract exogenous reads from the in-
put NGS reads by performing greedy alignments. Similar
to the initial screening step in published methods [18, 25,
26], our method thoroughly discards host-related reads
(steps I to IV in Fig. 1a). Unlike the sequential subtracting
approach used in other published methods [13, 18, 25],
our method independently maps the screened reads to in-
dividual microbial genomes (step V in Fig. 1a), which en-
ables us to define the mapping status of each read (step VI
in Fig. 1a), i.e., a read is categorized as either a “uniq-

species-hit” (or “uniq-genus-hit”), which is uniquely
mapped to a specific species (or genus), or as a “multi-spe-
cies-hit” (or “multi-genera-hit”), which is repeatedly
mapped to multiple species (or genera).
Prior to quantifying microbe abundance, our method

tests the statistical significance of the unique microbe hits
by preparing an ensemble of unique hits with random
read sets (step VIII in Fig. 1a). If the observed value of the
unique hits is significantly greater than its random ensem-
ble mean value, the pipeline reports the microbe as a po-
tential contaminant. Microbes that were detected with no
unique hits are considered not of interest. Next, to calcu-
late an RPMH (reads per million host-mapped reads)
value for each species (or genus), our method weighs the
reads repeatedly mapped to the multiple microbes re-
ported (step VII in Fig. 1a). The RPMH at a sample level
is based on the sum of the raw counts of microbe-mapped
reads. In summary, the proposed method explores
uniquely mapped reads, as a primary key, and exploits the
weighted contributions of reads mapped to multiple mi-
crobial genomes (see the “Methods” section).

Parameter tuning with simulated reads
To assess the performance of our mapping approach
(steps V and VI in Fig. 1a), we first conducted a reversion
test with random microbial read sets, which measures the
ratio of reads that correctly mapped to their origin ge-
nomes. We prepared 10,000 reads (1000 × 10 species) per
run and repeated the test 1000 times with different read
sets. We also tested different parameters for Bowtie2 [27].
Since the reversion test uses intact DNA fragments ran-
domly selected, if the pipeline works perfectly, all the
species will be detected with the 1000 reads.
With the default parameters (Fig. 1b), when counting

false positives at the species level (i.e., multi-species-
hits), 17% of the tested species had over 5% multi-spe-
cies-hits. When allowing reversion errors within the
same genus (i.e., counting uniq-genus-hits), only 0.7% of
the genera (11 out of 1504) showed over 5% multi-gen-
era-hits. The other parameters of Bowtie2 had no effect
on these results (Additional file 1: Figure S1A-C). This
observation implies the presence of high sequence similar-
ity at the species level. We calculated the ratios by running
PathSeq [18], FastQ Screen [28], and DecontaMiner [29]
(Additional file 2). Of note, comparing existing pipelines is
not straightforward because different aligners are
employed and databases are inaccessible in some cases.
With this in mind, the results indicated that the pipelines
exhibit inferior performance for a portion of the reads,
similar to our pipeline (Additional file 1: Figure S2A).
These results suggest that the FDRs likely depend on the
degree of microbial intra-species sequence homology
causing ambiguous multi-species-hits, rather than on in-
trinsic algorithmic differences in the pipelines.
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We next investigated the influence of interspecies se-
quence homology. Overall, although the reversion test en-
sures 1000 microbial reads as the intensity of a species,
counting only the uniq-genus-hits showed lower intensity
(i.e., loss of accuracy due in part to the occurrence of
multi-genera-hits), while taking the sum of all of the hits
showed higher intensity (i.e., gain of ambiguity due to the
involvement of multi-genera-hits) (Additional file 1:
Figure S1D). The existing pipelines we tested exhib-
ited the same propensity in detection accuracy
(Additional file 1: Figure S2B). These results point out the
inadequacy in the consideration of uniquely mapped reads
only and the need for careful handling of multi-genera-
hits that causes ambiguity in the contamination source.
To overcome this issue, we designed a scoring scheme

for multi-genera-hits (step VII in Fig. 1a). Based on the
overall mapping status of the input reads, multi-genera-hit
reads are rigorously penalized when a larger number of
uniq-genus-hits are found; however, the penalty is relaxed
when uniq-genus-hits are less frequent (Additional file 1:

Figure S3). Overall, our pipeline incorporating this scoring
scheme quantifies robust intensities compared to the sim-
ple sum of all of the hits (Additional file 1: Figure S1D).
To clarify further, we performed a comparative analysis
with the genera detected with over 5% FDR levels in
Fig. 1b. The result demonstrated that the loss of accuracy
can successfully recover when the weighted multi-genera-
hits are considered (Fig. 1c and Additional file 3:
Table S1). In addition, our detections of uniq-genus-hits
and multi-genera-hits were highly comparable to FastQ
screen with Bowtie2, which supports the validity of our
mapping strategy tuned with Bowtie2. Interestingly,
whereas the local alignment strategies (i.e., PathSeq and
FastQ screen) increased the gain of ambiguity, our pipe-
line reduced it by the scoring scheme.
In this analysis, we observed nine unexpected genera

with uniq-genus-hit reads resulting from misalignments
for complex reasons (Additional file 3: Table S2). For ex-
ample, a few reads of Escherichia coli were uniquely
mapped to Lambdavirus in 3 out of 1000 runs. To test

Fig. 1 Overall structure of the proposed pipeline and results of the performance assessment. a Schematic representation of the proposed
pipeline that executes rigorous read alignment with a large-scale genome database. b FDR distribution in the reversion tests considering falsely
mapped reads to other species or to other genera. Particular genera, including Raoultella, Shigella, and Kluyvera, are difficult to distinguish genomically.
c Comparative analysis for the effects of uniq-genus-hits and weighted multi-genera-hits in quantification. “Total mapped” represents the sum of uniq-
genus-hits (Unique and Unambiguous) and multi-genera-hits (Multiple and Ambiguous). “Weighted” represents the adjusted “Total mapped” by our
scoring scheme. d Correlations between the detection quantification and spike-in concentration assayed by DNA-seq (0-day cultured hPDL-MSCs with
antibiotics). e RPMH differences among three NGS protocols in Mycoplasma spike-in detections (3-day cultured hPDL-MSCs)
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whether these uniq-genus-hits are rare events, we pre-
pared random reads from our microbe genome database
that discarded Lambdavirus genomes and then mapped
them to the genera detected in each of the three runs to
collect random uniq-genus-hits. After 1000 runs, in the
case of Lambdavirus, the observation of ten unique hits
showed almost zero deviation above the mean of the
uniq-genus-hits from the mapping of random read sets
(p = 0.475 with z-score 0.063), implying a chance occur-
rence of the observed uniq-genus-hits (Additional file 3:
Table S2).
Considering these results, we adjusted the proposed

method to quantify the microbe abundance at genus-
level resolution and additionally reported species-level
quantifications. Evaluation of the significance of the
uniq-genus-hits of a genus prior to quantification is crit-
ical to avoid false results. For this purpose, instead of
adopting the arbitrary criteria used in other methods [9,
14, 16], the proposed pipeline conducts the abovemen-
tioned mapping with random read sets to estimate the
probability of the occurrence of uniquely mapped reads
(step VIII in Fig. 1a). The genus having significant
unique hits is finally quantified by the scoring scheme
(step IX in Fig. 1a).

Analysis of spike-in contaminants with mesenchymal
stem cells
To validate the performance with real-world data, we
prepared human periodontal ligament-derived mesen-
chymal stem cells (hPDL-MSCs) by culturing with and
without antibiotic treatments and by adding viable
spike-in microbes. We performed DNA-seq, RNA-seq,
and ATAC-seq assays with these samples (Table 1).
hPDL-MSCs are a promising clinical resource for peri-
odontal regeneration, as studied by our group [30].
As shown in Table 1, the spike-in microbes can be

quantified with uniq-genus-hits only, decreasing the con-
tribution of weighted multi-genera-hits. In the case of the
DNA-seq assay with six spike-in species, we quantified the
sample-level RPMHs that were well correlated with the
spike-in concentrations (Fig. 1d). At the genus level, we
could detect four species at 60 CFU and five species at
1100 CFU (p < 0.001), but failed to detect 60 CFU of
Candida albicans (p = 0.2), as did BWA-align [31] and
Taxonomer [17, 32]. By contrast, BWA-mem and NovoA-
lign found < 76 C. albicans reads with local alignments to
low-complexity sequence loci. Of note, the C. albicans
genome includes a particularly high content of repetitive
sequences [33]. These results suggest that the microbial
genomic context is one of the factors to determine the de-
tection accuracy particularly in the case of lower contam-
ination degree. In fact, the pipelines increased the
detection variability at 60 CFU spike-ins as shown in
Fig. 1d; PathSeq with BWA-mem reported a relatively

higher concentration and the k-mer matching of Taxono-
mer broadly reduced the concentrations along with filter-
ing a number of potential host-relevant reads (i.e., 165,777
in Sample1, 85,530 in Sample2, and 84,590 in Sample3).
With regard to antibiotic effects, the DNA-seq assay

with 3-day-cultured cells clearly demonstrated that anti-
biotic supplementation causes a ~ 1000-fold decrease in
the sample-level RPMH compared with that of cells cul-
tured without antibiotics. In particular, Acholeplasma
was markedly sensitive to sterilization compared with
Mycoplasma (Table 1 and Fig. 1e), suggesting the pres-
ence of varying drug sensitivities among microbes.
In summary, we concluded that the concentration of

spike-in cells can be recovered via our approach. Based
on the results of the DNA-seq assays at ~ 0.1× coverage
depth of the host genome with 60 CFU of microbes, we
estimated 0.01 RPMH as an approximation of the limit
of detection (LOD). That is, one microbial read will exist
when 100 million host reads are sequenced. However,
LOD verification depends on multiple factors, including
microbial genomic context, antibiotic susceptibility, se-
quencing depth, and sequencing protocol. In this regard,
the results of spike-in tests suggest that the ATAC-seq
assay offers a remarkable ability to detect contaminants
(Fig. 1e) with very few input reads shown in Table 1.

Detection of prevalent contaminants in public RNA-seq data
To profile the contamination landscape in public data, we
downloaded 389 human RNA-seq datasets from ENCODE
and Illumina Human BodyMap 2.0 (hereinafter called
“IHBM2”) and extracted the potential host-unmapped mi-
crobial reads with scattered percentages in the input reads
(Additional file 1: Figure S4A), which amounted to
0.15–18.7% in ENCODE and 0.54–3.0% in IHBM2.
Interestingly, the relative level of microbe-mapped reads
increased in a sample when the relative level of host-
mapped reads decreased (Fig. 2a). Overall, 98% of samples
fell within the range of 103–105 RPMHs, forming a refer-
ence range for RNA-seq sample-level RPMHs (Fig. 2b).
At the genus level, we detected 240 genera across the

samples (p < 0.001). These genera appeared 4040 times,
including widespread multi-genera-hits (Fig. 2c). Using
the weighted read counts, we quantified the genus-level
RPMHs of the 4040 occurrences, 91% of which were lo-
cated within 10 to 104 RPMHs (Fig. 2d). Among the 240
genera, 56 were known contaminants in NGS experiments
[12], such as Bacillus, Pseudomonas, and Escherichia
(Additional file 1: Figure S4B). The remainder included 28
genera commonly found in ENCODE and IHBM2 sam-
ples (Fig. 2e). In particular, Cutibacterium, including the
species C. acnes (formerly Propionibacterium acnes),
which is readily detected on human skin, was the most
prevalent, supporting the findings in a previous study [34].
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Table 1 Profiling of spike-in microbes with host-unmapped NGS reads

Assay
(culture)

Antibiotics Spike-ins CFU Input reads
(host-mapped)

Sample-level
RPMHs

Genus-level
RPMHs

Uniq-genus-hit Multi-genera-hit Weighted p value

DNA-seq
(0 day)

Yes 60 × 6 species 360 356,831,325
(354,374,295)

2.85

Aspergillus 60 0.023 8 1 8.00 7.93e−46

Candida 60 0.003 1 0 1.00 0.2

Bacillus 60 0.014 5 13 5.02 1.21e−10

Clostridium 60 0.006 1 26 2.07 0.439

Pseudomonas 60 0.144 50 8 50.98 0.0

Staphylococcus 60 0.015 4 13 5.32 2.57e−19

DNA-seq
(0 day)

Yes 1100 × 6 species 6600 364,040,378
(353,592,879)

7.31

Aspergillus 1100 0.274 96 4 96.83 0.0

Candida 1100 0.249 88 0 88.00 0.0

Bacillus 1100 3.600 1272 16 1272.90 0.0

Clostridium 1100 0.019 6 14 6.59 0.108

Pseudomonas 1100 1.379 484 22 487.74 0.0

Staphylococcus 1100 0.257 90 16 90.90 0.0

DNA-seq
(0 day)

Yes 2000 × 7 species 14,000 337,322,388
(326,833,300)

167.27

Acholeplasma 2000 70.632 23,075 52 23,084.88 0.0

Mycoplasma 12,000 94.750 30,957 49 30,967.52 0.0

DNA-seq
(3 days)

No 2000 × 7 species 14,000 330,472,068
(322,510,723)

4002.63

Acholeplasma 2000 3493.819 1,126,497 2123 1,126,793.98 0.0

Mycoplasma 12,000 500.993 161,484 956 161,575.60 0.0

Yes 2000 × 7 species 14,000 366,225,114
(355,493,668)

4.15

Acholeplasma 2000 1.872 665 1 665.40 0.0

Mycoplasma 12,000 1.336 475 0 475.00 0.0

RNA-seq
(3 days)

No 2000 × 7 species 14,000 293,731,220
(273,924,497)

700.00

Acholeplasma 2000 24.696 5949 3379 6764.96 0.0

Mycoplasma 12,000 20.636 3846 13,753 5652.74 0.0

Yes 2000 × 7 species 14,000 373,580,135
(343,111,904)

64.75

Acholeplasma 2000 n/a 0 0 n/a n/a

Mycoplasma 12,000 0.153 11 346 52.66 0.387

ATAC-seq
(3 days)

No 2000 × 7 species 14,000 155,464,170
(44,754,687)

436,529.79

Acholeplasma 2000 415,
647.522

18,596,370 42,587 18,602,
174.73

0.0

Mycoplasma 12,000 19,628.123 877,487 13,815 878,450.49 0.0

Yes 2000 × 7 species 14,000 115,413,203
(45,447,065)

212.14

Acholeplasma 2000 121.798 5533 14 5535.38 0.0

Mycoplasma 12,000 27.192 1234 7 1235.80 0.0
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Since the IHBM2 samples exhibited unique patterns,
as shown in Fig. 2b and d, we next investigated their
contamination characteristics by performing cluster ana-
lyses. The analysis clearly separated the sequencing li-
braries and revealed an increased magnitude of
contamination in the 16 tissue-mixture samples, likely
because producing such samples involved more cell-

processing steps (Fig. 3a); this separation led to the bi-
modal distribution shown in Fig. 2b. To confirm the in-
fluence of cell-processing complexity, we further
analyzed 22 samples of embryonic stem cells (ESCs) that
were sequenced at five time points during culturing on
various differentiation media [35]. This analysis revealed
three clusters strongly associated with the cell types and
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time points and found elevated levels of contamination in
the differentiated ESCs (Fig. 3b), suggesting that intricate
cell manipulation poses a higher risk of contamination.
Finally, we analyzed host-microbe chimeric reads with

paired-end (PE) ENCODE and IHBM2 samples. That is,
one end of a PE read was mapped to the host and its
counterpart to one or more microbes, and vice versa. The
total number of chimeric reads was very low among all of
the microbe-mapped reads, implying no considerable in-
fluence on the quantification of host gene expression: only
972,812 out of 750,736,667 microbe-mapped PE reads in
the ENCODE samples and 93,723 out of 28,622,763 mi-
crobe-mapped PE reads in the IHBM2 samples. On the
other hand, most of the chimerism existed in host gene
bodies that encode ribosome components, transporters,
and signaling molecules (Additional file 3: Table S3). The
genes were also upregulated in Mycoplasma-infected sam-
ples as described below. This finding should be further

studied to understand the association between NGS read
chimerism and microbial hijacking mechanisms.

Identifying genes responding to Mycoplasma infection in
MSCs
Mycoplasma is notorious for infecting cultured cells and
has been frequently detected in public NGS data [8, 9, 36].
Hence, we profiled the genus-level RPMHs of Mycoplasma
from the 389 ENCODE and IHBM2 samples as well as
from 43 heavily infected samples consisting of seven BL
DG-75 samples already known to be infected [9] and 36
lung cancer and stem cell samples. As a result, 110 out of
the 432 samples (25.5%) contained at least one Myco-
plasma uniq-genus-hit, but only 22 samples (5%) included
significant uniq-genus-hits (Fig. 4a). This large discrepancy
again suggests the importance of the careful handling of
homologous and erroneous NGS reads, which is impera-
tive to infer contaminant prevalence with certainty.
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Fig. 3 Results of the hierarchical clustering analysis with contamination profiles. a Contamination profile of the Illumina Human BodyMap2.0
(IHBM2) samples showing the increased RPMHs in 16 tissue-mixture RNA-seq datasets. b Contamination profile of ESCs (SRP067036) showing
three clusters associated with differentiation and time points
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To investigate host gene expression changes during
Mycoplasma infection, we identified DEGs between Myco-
plasma-positive Myco(+) hPDL-MSCs and uninfected
Myco(−) hPDL-MSCs. We performed the same analysis
by incorporating the Myco(+) human bone marrow MSCs
(hBM-MSCs) used in Fig. 4a and Myco(−) hBM-MSCs
(GSE90273). We also sequenced and identified DEGs
from Myco(−) hBM-MSCs as a control. Of note, although
decreases in gene expression should also be studied, we
focused on the differentially upregulated genes (DUGs) in
the Myco(+) samples to enable clear interpretations. We
identified 86 and 2185 DUGs in Myco(+) hPDL-MSCs
and in Myco(+) hBM-MSCs, respectively (Fig. 4b), 31 of
which existed in both classes of MSCs. Although the
DUGs are broadly involved in RNA processing, the genes
are significantly enriched in cotranslational protein

transport processes and with pathways involved in infec-
tion responses (Fig. 4c). None of these enrichments were
observed among the 3538 DEGs in Myco(−) hBM-MSCs
(Additional file 1: Figure S5). Among the 967 DUGs iden-
tified in Myco(+) MSCs, we ultimately retrieved 13 genes
that are specifically upregulated in Myco(+) hPDL-MSCs
and hBM-MSCs (Fig. 4d).
These results imply that the Mycoplasma in the MSCs

addressed here utilizes host protein biosynthesis machin-
ery related to the ER-associated degradation (ERAD)
pathway, a well-known microbial entry point [37, 38].
Moreover, one can infer that the abnormal increase in
the expression levels of the 13 DUG RNAs is a candidate
diagnostic marker for infection. Indeed, the DUGs were
also upregulated either in Myco(+) ESCs or other
Myco(+) MSCs (Fig. 4e).
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Fig. 4 Results of the Mycoplasma prevalence analysis and the functional impacts on host cells. a Twenty-two out of 432 public RNA-seq datasets
contained significant Mycoplasma-mapped reads (red-colored bar) that were normalized to RPMHs (blue-colored line); the x-axis labels are colored
black for DRA001846, gray for IHBM2, blue for ENCODE, and red for Mycoplasma-positive samples. b Gene expression correlation plots between
Mycoplasma-positive (Myco+) and Mycoplasma-negative (Myco-) MSCs; Myco(+) hPDL-MSCs are Mycoplasma spike-in cells (2000 CFU × 7 species, 3
days cultured without antibiotics), FPKMs were transformed onto the log10 scale by adding one, and the black-labeled genes are the 13 genes listed in
d. c Highly enriched Gene Ontology terms and Reactome pathways (q value after Bonferroni correction < 0.001). d Venn diagram showing unique or
shared differentially upregulated genes (DUGs) in MSCs, including 13 out of 967 DUGs unique to Myco(+) MSCs. e Expression levels of the 13 genes in
Myco(+) ESCs and MSCs; the values are expressed as relative TPM (transcripts per million)
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Inference of the functional impact of multiple contaminants
As shown in Fig. 5a, a few genes among the 967 DUGs
in the Myco(+) MSCs were upregulated in Myco(+) DG-
75 samples, which suggests a different type of response
in lymphoma. We investigated the correspondence be-
tween gene expression levels and Mycoplasma concen-
trations in the samples and identified genes potentially
associated with the infection (Additional file 1: Figure
S6A); however, significant GO terms were not detected,
which is consistent with the findings of a previous report
[9]. Remarkably, the DG-75 samples were heavily con-
taminated with multiple microbes (Fig. 5b), and the gene
expression levels exhibited diverse correlation patterns
with the concentrations of other microbes (Add-
itional file 1: Figure S6B), implying a profound influence
of co-contaminants on phenotypes.

To facilitate the inference of the impact of multiple
contaminants, we employed a joint non-negative matrix
factorization (jNMF) algorithm [39, 40] that modulates
multiple genes and contaminants associated in a set of
samples (Fig. 5c). We first prepared seven input datasets,
each of which contained five Myco(−) BL cell lines and
one of the seven Myco(+) DG-75 samples. After prepar-
ing contamination and transcriptome profiles for each
dataset, we repeatedly ran the jNMF algorithm by setting
a series of parameters for testing the clustering stability
(Additional file 1: Figure S7). In the case of DG75_1
(GSM1197380), the jNMF algorithm retrieved the mod-
ule that specifically includes elements co-elevated in the
dataset, i.e., 550 genes and 34 contaminants, including
Mycoplasma (Fig. 5d). By gathering this type of module
from all of the results of the seven input datasets, we

Fig. 5 Inference of DUGs associated with multiple contaminants in Myco(+) DG75 samples. a Expression profile of 967 DUGs unique to Myco(+)
MSCs. b Contamination profile with MSC, ESC, and DG-75 samples; the x-axis labels are colored black for Myco(−) and red for Myco(+). c
Schematic representation of module identification from two input profiles by the jNMF algorithm. d An example showing the module that
captured genes and contaminants co-elevated in a DG-75 sample. e Network representation of the association between genes and contaminants
co-elevated in the seven DG-75 samples; GO:0010941 is the enriched GO term in the genes found in at least four DG-75 samples (p = 3.76e−3). f
Expression profiles of the 33 genes involved in the biological process “regulation of cell death”, DG75_1 (GSM1197380), DG75_2 (GSM1197385),
DG75_3 (GSM1197386), DG75_4 (GSM1197381), DG75_5 (GSM1197382), DG75_6 (GSM1197383), DG75_7 (GSM1197384), NB_1 (GSM2225743), and
NB_2 (GSM2225744)
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could build a network modeling the connectivity be-
tween the upregulated genes and microbe concentra-
tions in the DG-75 samples (Fig. 5e).
The network consisted of 4322 edges connecting 2289

genes, 68 microbes, and seven samples. Of these genes,
259 genes were common to least four DG-75 samples,
and the biological process “regulation of cell death” (GO:
0010941) was significantly enriched in a subset of them
(p = 3.76e−3). This subset (33 genes) included tumor
necrosis factor receptors, which paradoxically play pro-
tumorigenic or pro-apoptotic functions [41], and huma-
nin-like proteins, which potentially produce mitochon-
dria-derived peptides that inhibit apoptosis [42]. Some of
the genes were also highly expressed in normal B cells,
where they are likely involved in activating immune re-
sponses. The Myco(−) BL cell lines exhibited repression of
these apoptosis-related genes (Fig. 5f), which implies that
the effect is not specific to cancerous cell types.
These results suggest that the severely contaminated

DG-75 samples resisted contamination by multiple mi-
crobes via inflammation pathways and survived by inhi-
biting apoptotic pathways via mitochondria-related
mechanisms or via the inhibitory effect of Mycoplasma
on apoptosis [36]. Collectively, we concluded that jNMF
facilitates the inference of how phenotypes (i.e., gene ex-
pression in this case) have been affected by the complex
activities of co-contaminants.

Discussion
We sought to assess the feasibility of NGS-based contam-
inant detection and to improve its certainty by conducting
microbe spike-in experiments and by analyzing public
data. For profiling microbial contamination, the use of
metagenomics approaches that depend on phylogenetic
markers or de novo assembly seems to offer little benefit,
because the sterilization of microbes and sequencing li-
brary preparation from host cell DNA lead to dilution and
degradation of microbe-derived nucleic acids [13, 14]. Fur-
thermore, since microbial communities can contaminate
host cells, a comprehensive catalog of microbial genomes
must be considered to avoid false inferences. Preliminarily,
we detected phiX174 in 77 out of 341 ENCODE samples
with the numbers of mapped reads ranging from 177
(ENCSR000AEG) to 7,031,626 (ENCSR000AAL). Surpris-
ingly, fewer than six reads in a sample were the uniq-
genus-hits of phiX174, and the remainder were multi-gen-
era-hits for phylogenetic neighbor bacteriophages [24, 43,
44]. This situation, which makes it difficult to identify the
true species, may occur frequently, as the uniquely
mapped and multi-mapped reads in the public datasets
exhibited a broad range of intensities (Fig. 2c).
We here developed a straightforward approach that uses

a large-scale genome database and exploits multi-mapped

reads that were discarded in previous studies. Although
our method successfully detected the origins of microbes
from the simulated reads of random mixtures, the detec-
tion certainty was still imperfect, particularly at species-
level resolution. To overcome this issue, we attempted to
estimate whether unique microbe-mapped reads are likely
observed by chance. We found that 80% of the 110 public
RNA-seq samples in which uniq-genus-hits of Myco-
plasma were detected resulted from random occurrences,
and 5% of 432 RNA-seq samples were most likely infected
with Mycoplasma. Moreover, we estimated 103–105 sam-
ple-level RPMHs consisting of 10–104 genus-level
RPMHs, consistent with previous reports; however, these
results illustrated more dispersion than expected. Of note,
it is possible that these RPMH estimations are limited to
the samples used here, as microbes are highly sensitive to
environmental conditions due to distinct genomic context,
growth rate, antibiotic susceptibility, and invasion mech-
anism, and RPMH distributions depend greatly on the
sample sets analyzed.
As shown by the results of the spike-in analyses, even

though the experimental conditions were identical, the
profiles differed between the DNA-seq, RNA-seq, and
ATAC-seq assays. Remarkably, RNA-seq profiling tended
to include more diverse microbes. This tendency may be
attributed to the relatively complex sample handling re-
quired, which leads to a higher risk of contamination. In-
deed, elaborate cell manipulations, such as tissue mixture
and induction of cell differentiation, result in increased
contamination diversity and intensity. On the other hand,
because most prokaryotes have histone-free supercoiled
nucleoids [45], ATAC-seq is superior for microbe detec-
tion with very low numbers of input reads. This suggests
that the ratio of microbe-to-human DNA accessibility is
useful to the NGS-based microbial contaminant detection
more than the ratios of the genome and transcriptome
sizes. This aspect of our work should be explored in more
detail in future studies.
By analyzing public NGS samples, we found that mi-

crobes from the genus Cutibacterium are widespread con-
taminants, which is thought to arise naturally [12]. In
addition to known contaminants, our microbe catalog
suggests that the major sources of contamination are la-
boratory reagents and experimental environments. Im-
portantly, any microbial contamination can trigger
phenotypic changes in the host cells; however, the re-
sponse pathways are diverse and unclear. For example, the
genes aberrantly expressed during Mycoplasma infection
differed greatly between MSCs and cancer cells. There-
fore, as an approach to systematically infer the effects of
contamination, we used network analysis with jNMF. This
approach revealed that host-contaminant interactions
alter the molecular landscape, and such alterations could
result in erroneous experimental conclusions.
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Conclusions
The findings in this study reinforce our appreciation of
the extreme importance of precisely determining the ori-
gins and functional impacts of contamination to ensure
quality research. In conclusion, NGS-based contaminant
detection supported by efficient informatics approaches
offers a promising opportunity to comprehensively pro-
file contamination landscapes.

Methods
Step-by-step procedure of the proposed pipeline
The proposed pipeline shown in Fig. 1a consists of step-
by-step operations detailed below.
Step I (quality control): Trimmomatic [46], with the

option “ILLUMINACLIP:adapter_file:2:30:10 LEADING:
20 TRAILING:20 MINLEN:36,” assesses the quality of
the input NGS reads by removing adapters and trim-
ming reads.
Step II (mapping to host reference genome): HISAT2

[47] coupled with Bowtie2 [27] with the option “-k 1”
aligns the quality-controlled reads to a host reference
genome.
Step III (removing host-relevant reads): To remove

any potential host reads, Bowtie2 with “--sensitive” and
via BLASTn with the options “-evalue 0.001 -perc_iden-
tity 80 -max_target_seqs 1” sequentially align the un-
mapped reads again to alternative host genomic and
transcriptomic sequences.
Step IV (making low-complexity sequences): The host-

unmapped reads that still remain are candidate contam-
inant-origin reads. To reduce false discovery, TANTAN
[48] masks the low-complexity sequences in the host-
unmapped reads.
Step V (mapping to a microbe genome): Bowtie2, with

the option “--sensitive,” aligns the masked sequences to
one set of bacterial, viral, or fungal genomes of species
belonging to the same genus. This step is independently
repeated with each of the 2289 genera.
Step VI (categorizing read-mapping status): A mapped

read is categorized as either a “uniq-genus-hit” (i.e.,
uniquely mapped to a specific genus) or a “multi-genera-
hit” (i.e., repeatedly mapped to multiple genera). The
statistics is gathered from the mapping results, which in-
cludes the total number of microbe-mapped reads (i.e.,
sum of “uniq-genus-hit” and “multi-genera-hit”) and the
total number of host-mapped reads.
Step VII (defining a shape of scoring function): The

total number of microbe-mapped reads (n) and the
number of genera of each “multi-genera-hit” read (Ti)
define an exponential function for weighting the “multi-
genera-hit” reads. That is, a score Si for the read i that
was mapped to Ti different genera (or a single genus) is
given by

Si ¼ e

−n Ti−1ð ÞPn

j¼1
T j :

Thus, a read uniquely mapped to a genus is counted
as 1.0, whereas a read mapped to multiple genera is pe-
nalized by the exponential function.
Step VIII (testing statistical significance of unique

hits): To test the chance occurrence of the “uniq-genus-
hit” reads that were mapped to specific microbes, the
pipeline first randomly samples n reads (i.e., the total
number of microbe-mapped reads) from the microbe ge-
nomes that discard the observed microbial genomes.
Next, the pipeline aligns the random reads to the ob-
served microbial genomes and counts the uniquely
mapped reads. This procedure is repeated ten times to
prepare an ensemble of random numbers of unique
reads for each observed genus. The numbers for a genus
are converted into z-scores, and the null hypothesis that
no difference exists between the observation and the
mean of its ensemble is tested, resulting in a p value.
Step IX (calculating RPMHs): For sample-level quanti-

fication, a normalized RPMH score (reads per million
host-mapped reads) is calculated as RPMH= n/m × 106,
where n and m are the total number of microbe-mapped
reads and the total number of host-mapped reads in a
given input dataset, respectively. For genus-level quanti-
fication, the RPMH of a genus G is calculated by

RPMH Gð Þ ¼
Pn‘

k¼1Sk

m
;

where n‘ is the total number of reads uniquely or repeat-
edly mapped to G.

Preparation of random microbial reads for reversion
Ten species belonging to distinct genera were randomly
selected, and 1000 100-base pair (bp) DNA fragments
from the genome of a selected species were prepared. A
run of the reversion test uses the 10,000 reads (1000
reads × 10 species) and calculates the false discovery rate
(FDR) for each species; that is, TN/(TN + TP), where TP
(true positive) is the number of reads mapped to their
origin and TN (true negative) is the number of reads
mapped to others. If the method works perfectly, the
species tested will be detected with 1000 uniquely
mapped reads (see Additional file 2).

Cell collection and culture
Human bone marrow-derived MSCs (hBM-MSCs) were
purchased from Lonza (Lonza, Walkersville, MD, USA),
and periodontal ligament-derived MSCs (hPDL-MSCs)
were prepared as previously described [49]. Briefly, peri-
odontal ligament (PDL) tissue samples separated from
the middle third of a patient’s wisdom tooth were
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digested with collagenase (Collagenase NB 6 GMP
Grade from Clostridium histolyticum; Serva, Heidelberg,
Germany)/dispase (Godo Shusei Co., Tokyo, Japan), and
single-cell suspensions were passed through a 70-μm cell
strainer (Falcon, Franklin Lakes, N.J., USA). The col-
lected cells were incubated in a culture plate (Falcon T-
25 flask, Primaria; BD Biosciences, San Jose, CA, USA)
in complete medium: α-MEM (Sigma-Aldrich, St. Louis,
MO, USA) containing 10% fetal bovine serum (Gibco;
Thermo Fisher Scientific, Waltham, MA, USA), 2 mM L-
glutamine (Sigma-Aldrich, St. Louis, MO, USA), and
82.1 μg/ml L-ascorbic acid phosphate magnesium salt n-
hydrate (Wako Junyaku, Tokyo, Japan) with the antibi-
otics gentamicin (40 μg/ml, GENTCIN; Schering-Plough,
Osaka, Japan) and amphotericin B (0.25 μg/m, FUNGI-
ZONE; Bristol-Myers Squibb, Tokyo, Japan). After three
passages for expansion in T-225 flasks, the cells were
preserved in freezing media (STEM-CELLBANKER
GMP grade; Nihon Zenyaku Kogyo, Fukushima, Japan)
and stored in liquid nitrogen.

Spike-in test of microbes with human PDL-MSCs
The frozen cells were rapidly thawed with gentle shaking
in a water bath at 37 °C. Next, the cells were spiked and
cultured in complete medium with and without antibi-
otics (40 μg/ml gentamicin and 0.25 μg/m amphotericin
B). Then, 2 × 105 cells were spiked with either Bioball®
(BioMérieux, France) or seven species of Mycoplasma
(Additional file 3: Table S4), 60 or 1100 colony-forming
units (CFU) of each Bioball, or 2000 CFU of each Myco-
plasma species. Genomic DNA was isolated 0 or 3 days
after the spike-in using a NucleoSpin Blood Kit
(Macherery-Nagel Inc., Easton, PA, USA), and total
RNA was isolated using a NucleoSpin RNA kit (Macher-
ery-Nagel Inc., Easton).

Sequencing of DNA and RNA libraries
DNA-seq libraries were prepared using 100 ng DNA and
the Illumina TruSeq Nano Kit, following the manufac-
turer’s instructions. RNA-seq libraries were prepared
using 200 ng total RNA and the SureSelect Strand-Spe-
cific RNA Reagent Kit (Agilent Technologies, Santa
Clara, CA, USA), following the manufacturer’s instruc-
tions. ATAC-seq libraries were prepared using 50,000
cells, according to a published protocol [50]. Sequencing
of 36-bp single ends of the RNA libraries from myco-
plasma-free hPDL-MSCs (three biological replicates) and
hBM-MSCs (three biological replicates) was performed
with an Illumina HiSeq2500 system. Sequencing of the
100-bp paired ends of the libraries of hPDL-MSCs with
microbe spike-in was conducted with an Illumina
HiSeq3000 system.

Implementation of joint non-negative matrix factorization
Joint non-negative matrix factorization (jNMF) has been
successfully applied for the detection of the so-called
modules in multiple genomic data [40, 51, 52]. Briefly,
given N multiple non-negative data matrices
Xm�nI ðI¼1;…;NÞ , jNMF decomposes the input matrices
into a common basis matrix Wm × k and a set of coeffi-
cient matrices Hk�nI by minimizing a squared Euclidean
error function formulated as

min
XN

I¼1

XI−WHIk k2F s:t:W ≥0;HI ≥0ð Þ;

where k is the factorization rank and F is the Frobenius
norm. To optimize this objective function, a multiplica-
tive update procedure was performed by starting with
randomized values for W and HI, which is well described
in many publications [40, 51, 53]. In a single trial, the
update procedure was repeated R times, and the trial
was restarted T times. During the trials, consensus
matrices Cm ×m and CnI�nI ðI¼1;…;NÞ were built to calcu-
late the co-clustering probabilities of all of the input ele-
ments, i.e., the cophenetic correlation coefficient values
[39]. For example, if the maximal value of the jth
factorization rank coincides with the ith element in Wm ×

k, all of the elements in m having > 0.8 with the ith
element in Cm ×m were modulated. In this study, N = 2
(i.e., contamination profile and expression profile) and
m = 6 (i.e., five Myco(−) samples and one Myco(+)
sample) were used. Thus, m, n1, and n2 represent cells,
contaminants, and genes, respectively. The parameters
T = 100, R = 5000, and k = 3 were set after testing the
clustering stabilities with the combinations of
T = (10,50,100), R = (1000,2000,5000), and k = (2, 3, 4, 5)
by calculating the cophenetic correlation coefficient
values [39]. The input profiles retaining elements with >
3 TPM and > 1 RPMH were converted to the log10 scale
by adding one.

Preparation of public datasets
The human reference genome (hg38) was downloaded
from the UCSC genome browser [54], and alternative se-
quences of the reference genome were downloaded from
the NCBI BLAST DB [55]. To build the microbial gen-
ome database, the complete genomes of bacteria, viruses,
and fungi were obtained from the NCBI RefSeq [56],
consisting of 11,360 species from 2289 genera. Raw
RNA-seq datasets (341) were downloaded from the EN-
CODE project [57], and additional raw RNA-seq data-
sets were downloaded from NCBI’s GEO and SRA,
including 48 Illumina Human BodyMap 2.0 (GSE30611),
22 ESCs (SRP067036), seven Burkitt’s lymphoma (BL)
DG-75 cell lines (GSE49321), 26 lung cancer cell lines
(DRA001846), and ten stem cells (PRJNA277616). The
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RNA-seq data for the EBV-negative BL cell lines (BL-41,
BL-70, CA46, GA-10, and ST486) were obtained from
the CCLE [58].

Bioinformatics analysis
To analyze the RNA-seq data, the HISAT2-Bowtie2
pipeline and the Cufflinks package [47, 59] were used
with hg38 and RefSeq gene annotation. After retrieving
genes with > 3 FPKMs in at least one sample, Cuffmerge
and Cuffdiff were performed to detect differentially
expressed genes (DEGs) satisfying a q value cutoff < 0.05
(Benjamini-Hochberg correction p value) and a > 2.0
fold-change (fc) cutoff. To analyze the RPMH clusters, R
language function hclust was used. The Euclidean dis-
tances among the RPMHs were adjusted by quantile
normalization and mean centering, and the hierarchical
average linkage method was used to group genera. To
analyze the enrichment of Gene Ontology (GO) terms
and pathways, the GOC web tool [60] was used with the
“GO biological process complete” and “Reactome path-
ways” datasets by selecting the option “Bonferroni cor-
rection for multiple testing.”
NovoAlign (V.3.08) was downloaded from the Novo-

craft [61], and Taxonomer was performed on the Taxo-
nomer website [32]. The network data were visualized
by using software Cytoscape (V.3.5.1). PathSeq [18],
FastQ Screen [28], and DecontaMiner [29] were installed
with their reference databases. Because FastQ Screen ac-
cepts limited number of genomes, the input reads were
mapped to ten specific genomes only. Detailed informa-
tion on the existing pipelines can be found from Add-
itional file 2. To calculate the sample-level RPMHs in
Fig. 1d, the existing pipelines were used to analyze the
host-unmapped reads of our pipeline, and the total
number of microbe-mapped reads was divided by the
total number of host-mapped reads from our pipeline.
As the total number of microbe-mapped reads, for Tax-
onomer, the numbers of ambiguous, bacterial, fungal,
phage, phix, and viral bins in the output file were
summed up. For DecontaMiner, the total counts of
“TOTAL_READS” in the output file were collected. For
PathSeq, the read count of the column “read” when the
column “type” is “root” in the output file was collected.

Additional files

Additional file 1: Figure S1. Results of the reversion test employing
different parameters for Bowtie2. Using the simulated read sets created
in Fig. 1b, Bowtie2 was performed with the parameters “--very-sensitive”
(A), “--fast” (B), and “--very-fast” (C). (D) Distribution of the reverted reads
of 5709 species at genus-level resolution (“--sensitive” parameter).
Figure S2. Results of the reversion test in the three existing pipelines. (A)
FDR distributions at genus-level resolution. (B) Distribution of the reverted
reads of 5709 species at genus-level resolution. Additional file 2 details
how these values were calculated. Figure S3. Examples of the scoring

function used to weight multi-genera-hit reads. The slope of the
exponential function is defined by the overall mapping status of the
input reads incorporated into M (the total number of microbe-mapped
reads) and N (the total number of unique or multiple hits of all microbe-
mapped reads). For instance, a read of ENCSR000AAR that mapped to
ten distinct genera (T = 10) is counted as 0.4. Figure S4. Profiling
contamination prevalence in public RNA-seq datasets. (A) Distributions of
the fractions of microbe-mapped reads in the total input reads of ENCODE
and IHBM2 (Illumina Human BodyMap 2.0). (B) Frequencies of 240 microbial
genera detected as significant contaminants in the samples. The
gray-colored bars represent known contaminants reported in Salter,
et al., 2014 [12]. Microbes labeled in black-, blue-, and red
correspond to bacterium, fungus, and virus, respectively. Figure S5.
Results of the enrichment analysis of GO biological process terms
with DEGs found in Myco(−) hBM-MSC BM1 and BM2. In BM1 and
BM2, 2237 DUGs (differentially upregulated genes) and 1301 DUGs were
identified,
respectively. The heatmap showed over-enriched GO terms in both BM1
and BM2. The enrichment analysis of the reactome showed no significant
enrichments (q-value < 0.001). DUG_BM1: differentially-upregulated genes
in Myco(−) hBM-MSCs that were sequenced in this study, DUG_BM2:
differentially-upregulated genes in Myco(−) hBM-MSCs that are publicly
available (GSE90273). The q-value is the Bonferroni-corrected p-value for
multiple testing. Figure S6. Correlation analysis of gene expression with
Mycoplasma concentration in Myco(+) DG-75 samples (GSE49321). (A)
Genes that exhibited positively (94) or negatively (195) correlated expression
patterns with Mycoplasma RPMHs among the seven samples (> 0.8 or
< − 0.8 in Pearson’s correlation coefficient); gene expression levels are
relative TPM values. (B) Distribution of correlation coefficient values of TPM
values with multiple contaminant RPMHs. Figure S7. jNMF example with
5 Myco(−) BL cell lines and Myco(+) DG-75_3 (GSM1197386). (A)
Contamination and gene expression profiles addressed by jNMF. (B)
Distributions of Cophenetic correlation coefficient (Cophenetic CC)
values and RSSs (residual sum of squares) in different k-ranks (=2,3,4,5).
Cophenetic CC values show the clustering stability and RSS represents the
difference between the matrices (A) and reconstructed matrices by jNMF;
each box at a k -rank includes the results from 9 jNMF runs with different
parameters; (1) results with the matrices (A); (2) results with randomized
matrices of (A). At rank k > 3, (1) and (2) became indistinguishable via the
Cophenetic CC, suggesting that the choice of k = 3 was reasonable. Other
parameter sets were not influenced in (1). (C) The common basis matrix W
and consensus matrices estimated by jNMF with the parameters k = 3,
T = 100 and R = 5000. (D) jNMF modules found in (C); K2 in (C) corresponds
to Module 1. (PDF 4425 kb)

Additional file 2: Concept of the reversion test and its procedure for
existing pipelines. (PDF 117 kb)

Additional file 3: Table S1. List of 11 genera of 291 reversion-test runs
showing over 5% FDR level. Table S2. List of genera accidentally found
in the reversion tests with different Bowtie2 parameters. Table S3.
Host-microbe chimeric reads overlapped with intergenic or host gene
body regions. Table S4. List of spike-in microbes. (XLSX 134 kb)
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