Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117.
Article
PubMed
CAS
Google Scholar
Hixon ML, Gualberto A. The control of mitosis. Front Biosci. 2000;5:D50–7.
Article
PubMed
CAS
Google Scholar
Musacchio A, Hardwick KG. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol. 2002;3:731–41.
Article
PubMed
CAS
Google Scholar
Nunes V, Ferreira JG. From the cytoskeleton to the nucleus: an integrated view on early spindle assembly. Semin Cell Dev Biol. 2021. https://0-doi-org.brum.beds.ac.uk/10.1016/j.semcdb.2021.03.006.
Kubo A, Sasaki H, Yuba-Kubo A, Tsukita S, Shiina N. Centriolar satellites: molecular characterization, Atp-dependent movement toward centrioles and possible involvement in ciliogenesis. J Cell Biol. 1999;147:969–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ou Y, Zhang M, Rattner JB. The centrosome: the centriole-PCM coalition. Cell Motil Cytoskeleton. 2004;57:1–7.
Article
PubMed
CAS
Google Scholar
Nigg EA. Centrosome duplication: of rules and licenses. Trends Cell Biol. 2007;17:215–21.
Article
PubMed
CAS
Google Scholar
Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol. 2002;14:25–34.
Article
PubMed
CAS
Google Scholar
Kumar A, Rajendran V, Sethumadhavan R, Purohit R. CEP proteins: the knights of centrosome dynasty. Protoplasma. 2013;250:965–83.
Article
PubMed
CAS
Google Scholar
Dammermann A, Merdes A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol. 2002;159:255–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Woodruff JB, Wueseke O, Hyman AA. Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130459.
Article
PubMed
PubMed Central
Google Scholar
Gupta GD, Coyaud É, Gonçalves J, Mojarad BA, Liu Y, Wu Q, et al. A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell. 2015;163:1484–99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mack GJ, Compton DA. Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a spindle-associated protein. Proc Natl Acad Sci. 2001;98:14434–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gruber J. The mitotic-spindle-associated protein astrin is essential for progression through mitosis. J Cell Sci. 2002;115:4053–9.
Article
PubMed
CAS
Google Scholar
Dunsch AK, Linnane E, Barr FA, Gruneberg U. The astrin–kinastrin/SKAP complex localizes to microtubule plus ends and facilitates chromosome alignment. J Cell Biol. 2011;192:959–68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thein KH, Kleylein-Sohn J, Nigg EA, Gruneberg U. Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity. J Cell Biol. 2007;178:345–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL, Al-Gazali L, et al. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. eLife. 2015;4:e07519.
Article
PubMed Central
Google Scholar
Gholkar AA, Senese S, Lo Y-C, Vides E, Contreras E, Hodara E, et al. The X-linked-intellectual-disability-associated ubiquitin ligase Mid2 interacts with astrin and regulates astrin levels to promote cell division. Cell Reports. 2016;14:180–8.
Article
PubMed
CAS
Google Scholar
Liu H, Hu J, Wei R, Zhou L, Pan H, Zhu H, et al. SPAG5 promotes hepatocellular carcinoma progression by downregulating SCARA5 through modifying β-catenin degradation. J Exp Clin Cancer Res. 2018;37:229.
Article
PubMed
PubMed Central
Google Scholar
Liu JY, Zeng QH, Cao PG, Xie D, Yang F, He LY, et al. SPAG5 promotes proliferation and suppresses apoptosis in bladder urothelial carcinoma by upregulating Wnt3 via activating the AKT/mTOR pathway and predicts poorer survival. Oncogene. 2018;37:3937–52.
Article
PubMed
CAS
Google Scholar
Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 2003;426:570–4.
Article
PubMed
CAS
Google Scholar
Jakobsen L, Vanselow K, Skogs M, Toyoda Y, Lundberg E, Poser I, et al. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J. 2011;30:1520–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ling YH, Wong CC, Li KW, Chan KM, Boukamp P, Liu WK. CCHCR1 interacts with EDC4, suggesting its localization in P-bodies. Exp Cell Res. 2014;327:12–23.
Article
PubMed
CAS
Google Scholar
Suomela S, Kainu K, Onkamo P, Tiala I, Himberg J, Koskinen L, et al. Clinical associations of the risk alleles of HLA-Cw6 and CCHCR1*WWCC in psoriasis. Acta Derm Venereol. 2007;87:127–34.
Article
PubMed
Google Scholar
Elomaa O, Majuri I, Suomela S, Asumalahti K, Jiao H, Mirzaei Z, et al. Transgenic mouse models support HCR as an effector gene in the PSORS1 locus. Hum Mol Genet. 2004;13:1551–61.
Article
PubMed
CAS
Google Scholar
Suomela S, Elomaa O, Skoog T, Ala-aho R, Jeskanen L, Pärssinen J, et al. CCHCR1 is up-regulated in skin cancer and associated with EGFR expression. Plos One. 2009;4:e6030.
Article
PubMed
PubMed Central
Google Scholar
Reich K, Hüffmeier U, König IR, Lascorz J, Lohmann J, Wendler J, et al. TNF polymorphisms in psoriasis: association of psoriatic arthritis with the promoter polymorphism TNF*-857 independent of the PSORS1 risk allele. Arthritis Rheum. 2007;56:2056–64.
Article
PubMed
CAS
Google Scholar
Seto E, Yoshida-Sugitani R, Kobayashi T, Toyama-Sorimachi N. The assembly of EDC4 and Dcp1a into processing bodies is critical for the translational regulation of IL-6. Plos One. 2015;10:e0123223.
Article
PubMed
PubMed Central
Google Scholar
Song M-G, Kiledjian M. 3’ Terminal oligo U-tract-mediated stimulation of decapping. RNA. 2007;13:2356–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tritschler F, Braun JE, Motz C, Igreja C, Haas G, Truffault V, et al. DCP1 forms asymmetric trimers to assemble into active mRNA decapping complexes in metazoa. Proc Natl Acad Sci U S A. 2009;106:21591–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tervaniemi MH, Siitonen HA, Soderhall C, Minhas G, Vuola J, Tiala I, et al. Centrosomal localization of the psoriasis candidate gene product, CCHCR1, supports a role in cytoskeletal organization. Plos One. 2012;7:e49920.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tervaniemi MH, Katayama S, Skoog T, Siitonen HA, Vuola J, Nuutila K, et al. Intracellular signalling pathways and cytoskeletal functions converge on the psoriasis candidate gene CCHCR1 expressed at P-bodies and centrosomes. BMC Genomics. 2018;19:432.
Article
PubMed
PubMed Central
Google Scholar
Brenner LN, Mercader JM, Robertson CC, Cole J, Chen L, Jacobs SBR, et al. Analysis of glucocorticoid-related genes reveal CCHCR1 as a new candidate gene for type 2 diabetes. J Endocr Soc. 2020;4:bvaa121.
Article
PubMed
PubMed Central
CAS
Google Scholar
He D, Zhang X, Tu J. Diagnostic significance and carcinogenic mechanism of pan-cancer gene POU5F1 in liver hepatocellular carcinoma. Cancer Med. 2020;9:8782–800.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao Q, Koyama S, Yoshihara N, Takagi A, Komiyama E, Wada A, et al. The alopecia areata phenotype is induced by the water avoidance stress test in cchcr1-deficient mice. Biomedicines. 2021;9:840.
Article
PubMed
PubMed Central
CAS
Google Scholar
Conti D, Gul P, Islam A, Martin-Duran JM, Pickersgill RW, Draviam VM. Kinetochores attached to microtubule-ends are stabilised by astrin bound PP1 to ensure proper chromosome segregation. eLife. 2019;8:e49325.
Article
PubMed
PubMed Central
Google Scholar
Kern DM, Monda JK, Su K-C, Wilson-Kubalek EM, Cheeseman IM. Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80. Elife. 2017;6:e26866.
Article
PubMed
PubMed Central
Google Scholar
Song X, Conti D, Shrestha RL, Braun D, Draviam VM. Counteraction between Astrin-PP1 and Cyclin-B-CDK1 pathways protects chromosome-microtubule attachments independent of biorientation. Nat Commun. 2021;12:7010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nandi D, Tahiliani P, Kumar A, Chandu D. The ubiquitin-proteasome system. J Biosci. 2006;31:137–55.
Article
PubMed
CAS
Google Scholar
Oshimori N, Li X, Ohsugi M, Yamamoto T. Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation. Embo J. 2009;28:2066–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brown NJ, Marjanović M, Lüders J, Stracker TH, Costanzo V. Cep63 and cep152 cooperate to ensure centriole duplication. Plos One. 2013;8:e69986.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bouissou A, Vérollet C, de Forges H, Haren L, Bellaïche Y, Perez F, et al. γ-Tubulin ring complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning. EMBO J. 2014;33:114–28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Uhlmann F, Lottspeich F, Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature. 1999;400:37–42.
Article
PubMed
CAS
Google Scholar
Zur A, Brandeis M. Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J. 2001;20:792–801.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang X, Hatcher R, York JP, Zhang P. Securin and separase phosphorylation act redundantly to maintain sister chromatid cohesion in mammalian cells. Mol Biol Cell. 2005;16:4725–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee K, Rhee K. Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle. 2012;11:2476–85.
Article
PubMed
CAS
Google Scholar
Jiang J, Wang J, He X, Ma W, Sun L, Zhou Q, et al. High expression of SPAG5 sustains the malignant growth and invasion of breast cancer cells through the activation of Wnt/β-catenin signalling. Clin Exp Pharmacol Physiol. 2019;46:597–606.
Article
PubMed
CAS
Google Scholar
Liu G, Liu S, Cao G, Luo W, Li P, Wang S, et al. SPAG5 contributes to the progression of gastric cancer by upregulation of Survivin depend on activating the wnt/β-catenin pathway. Exp Cell Res. 2019;379:83–91.
Article
PubMed
CAS
Google Scholar
You K, Su F, Liu L, Lv X, Zhang J, Zhang Y, et al. SCARA5 plays a critical role in the progression and metastasis of breast cancer by inactivating the ERK1/2, STAT3, and AKT signaling pathways. Mol Cell Biochem. 2017;435:47–58.
Article
PubMed
CAS
Google Scholar
Kim JC, Badano JL, Sibold S, Esmail MA, Hill J, Hoskins BE, et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet. 2004;36:462–70.
Article
PubMed
CAS
Google Scholar
Li X, Song N, Liu L, Liu X, Ding X, Song X, et al. USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun. 2017;8:14866.
Article
PubMed
PubMed Central
CAS
Google Scholar
Staples CJ, Myers KN, Beveridge RDD, Patil AA, Lee AJX, Swanton C, et al. The centriolar satellite protein Cep131 is important for genome stability. J Cell Sci. 2012;125(Pt 20):4770–9.
PubMed
CAS
Google Scholar
Ying Z, Yang J, Li W, Wang X, Zhu Z, Jiang W, et al. Astrin: a key player in mitosis and cancer. Front Cell Dev Biol. 2020;8:866.
Article
PubMed
PubMed Central
Google Scholar
Chu X, Chen X, Wan Q, Zheng Z, Du Q. Nuclear mitotic apparatus (NuMA) interacts with and regulates astrin at the mitotic spindle. J Biol Chem. 2016;291:20055–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chung HJ, Park JE, Lee NS, Kim H, Jang C-Y. Phosphorylation of astrin regulates its kinetochore function. J Biol Chem. 2016;291:17579–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Geraghty Z, Barnard C, Uluocak P, Gruneberg U. The association of Plk1 with the astrin-kinastrin complex promotes formation and maintenance of a metaphase plate. J Cell Sci. 2021;134:jcs251025.
PubMed
PubMed Central
CAS
Google Scholar
Ducat D, Zheng YX. Aurora kinases in spindle assembly and chromosome segregation. Exp Cell Res. 2004;301:60–7.
Article
PubMed
CAS
Google Scholar
Lukasiewicz KB, Lingle WL. Aurora A, Centrosome structure, and the centrosome cycle. Environ Mol Mutagen. 2009;50:602–19.
Article
PubMed
CAS
Google Scholar
Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 2007;8:379–93.
Article
PubMed
CAS
Google Scholar
Welburn JPI, Vleugel M, Liu D, Yates JR, Lampson MA, Fukagawa T, et al. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell. 2010;38:383–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schmidt JC, Kiyomitsu T, Hori T, Backer CB, Fukagawa T, Cheeseman IM. Aurora B kinase controls the targeting of the astrin–SKAP complex to bioriented kinetochores. J Cell Biol. 2010;191:269–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shrestha RL, Conti D, Tamura N, Braun D, Ramalingam RA, Cieslinski K, et al. Aurora-B kinase pathway controls the lateral to end-on conversion of kinetochore-microtubule attachments in human cells. Nat Commun. 2017;8:150.
Article
PubMed
PubMed Central
Google Scholar
Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Kläsener K, Ruf S, et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell. 2013;154:859–74.
Article
PubMed
CAS
Google Scholar
Youn J-Y, Dyakov BJA, Zhang J, Knight JDR, Vernon RM, Forman-Kay JD, et al. Properties of stress granule and P-body proteomes. Mol Cell. 2019;76:286–94.
Article
PubMed
CAS
Google Scholar
Youn J-Y, Dunham WH, Hong SJ, Knight JDR, Bashkurov M, Chen GI, et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol Cell. 2018;69:517–532.e11.
Article
PubMed
CAS
Google Scholar
Aizer A, Brody Y, Ler LW, Sonenberg N, Singer RH, Shav-Tal Y. The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell. 2008;19:4154–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moser JJ, Fritzler MJ, Rattner JB. Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes. BMC Cell Biol. 2011;12:37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oka A, Takagi A, Komiyama E, Yoshihara N, Mano S, Hosomichi K, et al. Alopecia areata susceptibility variant in MHC region impacts expressions of genes contributing to hair keratinization and is involved in hair loss. EBioMedicine. 2020;57:102810.
Article
PubMed
PubMed Central
Google Scholar
Abdel-Fatah TMA, Agarwal D, Liu D-X, Russell R, Rueda OM, Liu K, et al. SPAG5 as a prognostic biomarker and chemotherapy sensitivity predictor in breast cancer: a retrospective, integrated genomic, transcriptomic, and protein analysis. Lancet Oncol. 2016;17:1004–18.
Article
PubMed
CAS
Google Scholar
Zhang M, Sha L, Hou N, Shi C, Tan L. High expression of sperm-associated antigen 5 correlates with poor survival in ovarian cancer. Biosci Reports. 2020;40:2.
Horowitz JE, Kosmicki JA, Damask A, Sharma D, Roberts GHL, Justice AE, et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet. 2022;4:382–92.
Article
Google Scholar
Afonso PV, Zamborlini A, Saïb A, Mahieux R. Centrosome and retroviruses: the dangerous liaisons. Retrovirology. 2007;4:27.
Article
PubMed
PubMed Central
Google Scholar
Cheng T-S, Hsiao Y-L, Lin C-C, Hsu C-M, Chang M-S, Lee C-I, et al. hNinein is required for targeting spindle-associated protein Astrin to the centrosome during the S and G2 phases. Exp Cell Res. 2007;313:1710–21.
Article
PubMed
CAS
Google Scholar