Dual RNA-seq analysis of epithelial cells and Nocardia during infection
To date, no RNA-seq data related to Nocardia infection have been reported. To fully understand the pathogenic mechanism of Nocardia and the adaptive response mechanism of the host response to Nocardia infection, the dual RNA-seq approach was applied in this study. To characterize the interactions of N. farcinica with lung epithelial cells, an in vitro infection model was built using human alveolar epithelial cells. N. farcinica was used to infect A549 cells for 1, 3, and 6 h at an MOI of 10. Giemsa analysis showed that some N. farcinica adhered and invaded the cells (Fig. 1a).
Dual RNA-seq was used to determine genome-scale expression events in both hosts and bacteria at 1, 3, and 6 h post-infection (hpi). The transcriptomic data for dual RNA-seq were generated by applying the paired-end 75-nucleotide sequence method. Approximately 120 to 200 million reads were obtained at each time point after depletion of rRNA in both cells and bacteria, which was sufficient for dual RNA profiling (Fig. 1b). Principal component analysis (PCA) was used to investigate the trends in sequence data, which showed that similar samples clustered together without obvious batch effects (Fig. 1c). Pearson correlation of between samples is shown in Additional file 1: Fig. S1.
To simplify further analyses, we selected genes that were differentially expressed ≥2-fold with an adjusted p<0.05 for follow-up research (Fig. 1d, e). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these differentially expressed genes (DEGs) were mainly involved in membrane transport, translation, amino acid, and carbohydrate metabolism for N. farcinica, transport and catabolism, cell growth and death, signal transduction, signaling molecules and interaction, immune diseases, substance dependence, metabolism, and immune system for host cells (Additional file 1: Fig. S2 and Fig. S3).
To validate the dual RNA-seq data, we first applied the total RNA that was used for sequencing as a template and randomly selected DEGs at different time points of infection for verification. Then, we repeated the experiments to obtain total RNA as a template and randomly selected DEGs for verification (Additional file 1: Table S1). As shown in Additional file 1: Fig. S4, the RNA-seq and qRT–PCR data showed a relatively strong correlation: R2 = 0.95 for Nocardia and R2 = 0.86 for epithelial cells, which indicated the reliability of the dual RNA-seq results.
Immune responses
Inflammation is a hallmark of Nocardia infection, which is mainly mediated by cytokines and chemokines. Notably, KEGG enrichment analysis of the DEGs during infection showed an enrichment of multiple immune-related signaling pathways of the host, including the tumor necrosis factor (TNF) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway. To further clarify the characteristics of lung inflammation caused by Nocardia infection in vivo, N. farcinica in the exponential phase was used to infect mice intranasally, and immune factors in the lung were detected at 1, 3, and 7 days post-infection (dpi). As shown in Fig. 2, CXCL2, CXCL10, GM-CSF, M-CSF, IL-1β, IL-6, IL-17, and TNF-α were upregulated during early N. farcinica infection. The early host response and bacterial clearance mainly rely on neutrophils during pulmonary nocardiosis. IL-17 is involved in neutrophil infiltration during pulmonary nocardiosis [16], and the expression of IL-17 is upregulated during Nocardia infection. CXCL2, which has potent neutrophil chemotactic activity, was rapidly and significantly upregulated in the lung within 24 h of infection, which indicated that neutrophils recruited by CXCL2 played an important role during pulmonary nocardiosis. However, many chemokines have not yet been reported in the context of Nocardia infection. The production of CXCL10, which has mononuclear cell chemotactic activity, was also upregulated during early infection in this study. Interestingly, the expression of CCL2 was downregulated during lung infection caused by N. farcinica, which supported the differential regulation and functions of chemokines during Nocardia infection. GM-CSF expression was increased in the lung. Interestingly, anti-GM-CSF autoantibodies have been reported in patients with a primary cerebral abscess caused by Nocardia infection, and these patients may be at risk for later development of pulmonary alveolar proteinosis or other opportunistic infections [17, 18]. The expression of IFN-γ was not upregulated significantly during infection, indicating that the adaptive immunity of the Th1 response was not involved in pulmonary nocardiosis.
N. farcinica Responses upon Infection of A549 cells
-
(i)
Bacterial transcriptional adaptation at intermediate-late infection
An increased number of Nocardia invaded A549 cells during infection under the present experimental conditions. To gain insights into the intermediate-late transcriptome signatures after colonization, DEGs at 3 and 6 phi were analyzed and compared with those at 1 hpi (Additional file 1: Fig. S5 and Additional file 2). The biosynthesis pathway of siderophore group nonribosomal peptides was significantly enriched at both 3 and 6 hpi compared with 1 hpi. However, no studies have been conducted on the virulence of these genes in Nocardia. In the present experiment, the RS03880 (nbtG), RS03155 (nbtS), RS03900 (nbtC), RS03910 (nbtE), RS03160 (nbtT), RS03905 (nbtD), RS03915 (nbtF), RS27150 (NFA_54680), and RS03895 (nbtB) genes, which are related to the biosynthesis of siderophore group nonribosomal peptides, were upregulated significantly (Fig. 3a). In addition, the adaptation of pathogen metabolism to the nutrients available in the host is an important prerequisite for survival [19]. These fruA and fruB genes, which are important in the metabolism of fructose, were upregulated during Nocardia infection. Numerous amino acids, such as proline and arginine, are available in vivo and could serve as a source of energy under anaerobic conditions. The mftE and pruA genes were upregulated during Nocardia infection and participated in the metabolism of arginine and proline. The pyruvate metabolism pathway was also enriched during infection, which supported the adaptation of Nocardia metabolism to the energy stresses present under in vivo conditions (Additional file 1: Fig. S6).
-
(ii)
Potential key factors for bacterial survival during infection
To discover potential virulence-related genes associated with persistent infection after colonization, we first analyzed the DEGs that were expressed at both 3 and 6 hpi compared with 1 hpi (Fig. 3b). It was found 66 common genes were differentially expressed at both 6 and 3 hpi. Then, we analyzed 66 common genes and found that they were mainly involved in metabolic and environmental information processing pathways (Fig. 3c). These common DEGs are related to the biosynthesis pathway of siderophore group nonribosomal peptides, ABC transporters, and microbial metabolism in diverse environments, the phosphotransferase system (PTS), and the biosynthesis of secondary metabolites, which is crucial for the ability of Nocardia to cause infection and survive in the internal environment.
-
(iii)
Confirmation of virulence genes during infection
At present, there are few studies on Nocardia virulence factors, and many potential virulence factors have not yet been discovered. To clarify the potential virulence-related or potentially important genes that cause persistent infection, we constructed a series of genetic deletions of N. farcinica to confirm the functions of these genes during infection in the mouse infection model [20] (Additional file 1: Fig. S7A). We first detected lactate dehydrogenase (LDH) in the culture supernatant of A549 cells at 8 h after infection with N. farcinica and the mutants. As shown in Fig. 4a, the ΔRS22575 (narI) and ΔRS24110 (NFA_48610) mutants showed significantly higher cytotoxicity to A549 cells than the wild-type, which indicated that these genes might have potential protective effects on host cells.
To further clarify the function of these possible key genes, we infected mice and analyzed the bacterial load in the lung tissues and the mortality of the mice after infection. As shown in Fig. 4b and c, after infection with the ΔnbtB, ΔnbtS, ΔRS00660 (NFA_1310), and ΔRS03870 (NFA_7590) strains, the bacterial load in the lungs of mice was significantly reduced, and the survival rate was significantly improved compared with that of the mice infected with wild-type. In particular, strains ΔnbtB and ΔnbtS did not cause death of the mice, and thus, they may be the key virulence factors for Nocardia during infection.
Interestingly, the mice infected with N. farcinica showed significant behavioral changes, such as turning in circles and regressive and other neurological symptoms, but the ΔnbtB and ΔnbtS mutants did not cause behavioral changes, which revealed that nbtB and nbtS played a crucial role during Nocardia infection and that these genes were required for the virulence of N. farcinica. We also found that NFA_7590, which encodes siderophore-interacting protein, was upregulated, and deletion of this gene resulted in significantly impaired bacterial virulence. In addition, the ΔRS24125(NFA_48640) and the ΔNFA_1310 mutant showed attenuated virulence. Furthermore, we found that the ΔnarI, ΔNFA_48610, and ΔRS03935 (NFA_7720) mutants failed to significantly affect the survival rate of mice compared with the wild-type after infection.
N. farcinica-induced remodeling of gene expression in A549 cells
-
(i)
Host transcriptional response upon infection at intermediate-late infection
We then mainly focused on characterizing the host cell response to Nocardia infection (Fig. 5b, Additional file 1: Fig. S8, and Additional file 3). There were 48 DEGs during the intermediate-late stage, and further heatmaps and protein–protein interaction networks showed that these genes were mainly involved in epigenetic modifications mediated by histones (Fig. 5a, c). The expression of most histones in this experiment was downregulated during infection. Histones, primarily known for the role of condensing chromosomal DNA of mammals, are also involved in innate immune responses to antipathogens and the regulation of gene expression. Extracellular histones can activate proinflammatory signaling via Toll-like receptors [21]. M. tuberculosis can secrete several factors to target histones during infection, which could contribute to sustained bacterial survival in the host via histone modification [22, 23]. Indeed, modification of epigenomic processes is of importance for bacterial pathogen infection, and regulating or inhibiting these processes via histones may alter the outcome of infection.
Angiopoietin-like 4 (ANGPTL4) was upregulated significantly at 6 hpi compared with 1 hpi. ANGPTL4 expression was reported to be elevated and involved in lung damage during infection caused by numerous stimuli, such as influenza pneumonia [24, 25]. Pneumonia is a common clinical symptom caused by Nocardia infection, and elevated ANGPTL4 may be involved in the lung damage caused by Nocardia. As shown in Fig. 5d and e, the production of ANGPTL4 was elevated significantly at 6 h after infection in A549 cells. In addition, the ANGPTL4 protein in the lungs of mice intranasally infected by N. farcinica was significantly upregulated. However, the mechanism by which ANGPTL4 mediates pulmonary inflammation induced by Nocardia is unclear and requires further study.
In addition, ANGPTL4 plays an important role in regulating the integrity of endothelial vascular junctions via integrin pathways and destroys claudin-5 clusters and intercellular VE-cadherin [26]. Liu et al. reported that ANGPTL4 was significantly upregulated in meningitis and induced an increased permeability of the blood–brain barrier (BBB) by elevating myosin light chain 5 (MYL5) expression through RhoA signaling pathway activation [27]. The first step of infection of the brain induced by Nocardia is BBB disruption, but the underlying mechanism is unclear. In this study, ANGPTL4, which is involved in BBB integrity, was significantly upregulated, which indicated that this gene might play a critical role in the BBB destruction induced by Nocardia infection.
WNT-inducible signaling pathway protein-1 (WISP1), which plays an important role in lung injury, was significantly upregulated during Nocardia infection. Recently, WISP1 was shown to promote the inflammatory response via TLR4/CD14 pathways in sepsis-induced lung injury [28]. DNA damage-inducible transcript 4 (DDIT4), encoding Rtp801, is also involved in inflammation in the lung and can promote alveolar inflammation and apoptosis of alveolar cells by suppressing mTOR signaling pathways, leading to lung injury [29]. In our study, we found that the expression of DDIT4 was upregulated, which suggested that this gene might participate in lung inflammation induced by Nocardia infection.
-
(ii)
Neurodegenerative symptom analysis
During the in-depth exploration and analysis of the KEGG pathway, we found that some DEGs related to the pathways of the nervous system and neurodegenerative diseases were dysregulated, which caught our attention. Nocardia can quickly cross the blood–brain barrier and enter the brain parenchyma, causing central nervous system infection. Under our experimental conditions, not only were PD-related genes differentially expressed, but genes related to other nervous system and neurodegenerative diseases, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and other related genes, were also differentially expressed, which indicated that Nocardia entered the brain parenchyma and might cause a variety of symptoms related to the nervous system or neurodegenerative diseases (Fig. 6a). As shown in Fig. 6b, the RT–PCR results from PC12 cells were consistent with the gene expression trend of the RNA sequencing results.
To further verify the association between Nocardia infection and PD-like symptoms through in vivo experiments, we infected mice with N. farcinica intravenously and analyzed the symptoms after infection. We found that all mice showed neurological symptoms without death post-infection with 5 × 106 CFU N. farcinica. However, a higher infectious dose caused some mice to die, and a lower infectious dose resulted in insignificant neurological symptoms in some mice. Therefore, an infection dose of 5 × 106 CFU was used in the subsequent study. The pole test, a method for testing the motor performance in PD, was applied to evaluating the motor dysfunction caused by Nocardia infection. As shown in Fig. 6c, N. farcinica infection caused motor dysfunction as measured by prolonging in the Tturn and Ttotal time as compared to control group. We also found that the ΔnbtS mutant strain almost have no effect on Tturn and Ttotal time as compared to control group. Besides, the behavioral disorder was visible as follows: (a) head falling on one side (Additional file 4: video 1); (b) a tendency to turn in the same direction when lifted by the tail (Additional file 4: video 2); (c) body quiescent tremor and rhythmical and vertical head movements (Additional file 4: video 1); (d) stagnation and turning backward in the same direction in unfamiliar environments, with the hind limbs open and stride length altered (Additional file 4: video 3); (e) circling of some mice at 3 months after infection (Additional file 4: video 4). The above symptoms further confirmed that N. farcinica infection could cause a series of neurodegenerative-like disease symptoms, which indicated that Nocardia infection might be involved in the development of neurodegenerative diseases such as PD.
However, can all Nocardia infections invade the brain and cause neurological symptoms? We analyzed the relationship between 22 clinical Nocardia infections (Additional file 1: Fig. S9) and neurodegenerative diseases. Mice were infected intravenously with the above Nocardia strains, and symptoms were observed after infection. We found that N. Africa, N. kruczakiae, N. amikacinitolerans, N. pseudobrasiliensis, N. mexicana, N. novocastrense, N. caishijiensis, N. wallacei, N. pneumoniae, N. brasiliensis, N. inohanensis, N. transvalensis, N. beijingensis, N. blacklockiae, and N. asiatica infection caused neurological behavioral disorder at different times after infection, and the other strains did not cause obvious behavioral disorder symptoms after infection under the conditions used in our experiment (Fig. 6d). These results indicated that not all Nocardia infections could cause neurological symptoms, and strains capable of inducing neurological infection should arouse attention in clinical work.
-
(iii)
Microglial activation mediates the development of PD-like symptoms induced by Nocardia
Damage or loss of dopaminergic neurons in the substantia nigra and a decreased dopamine content in the striatum are typical pathological features of PD. As shown in Fig. 7a, after Nocardia infection, the number of dopaminergic neurons in the substantia nigra of the mouse brain was significantly reduced post-infection, and the shape of the dopaminergic neurons was irregular. To further validate whether Nocardia infection caused PD-like symptoms, we analyzed the changes in dopamine content in the striatum of the mouse brain. As shown in Fig. 7b, the tyrosine hydroxylase (TH) in the striatum of the mouse brain was significantly reduced after infection, further indicating that Nocardia infection could cause a decrease in striatal dopamine content, which in turn led to PD-like neurological symptoms. In addition, we also observed a decrease in dopamine content in the olfactory bulb (Fig. 7)b.
It has been reported that neuroinflammation is associated with neurodegenerative diseases and that microglia play a key role in inflammatory responses in the central nervous system [30,31,32]. In the present study, we found that microglia in the substantia nigra region were significantly activated, while astrocytes were not activated (Fig. 7c). Activated microglia can be divided into two different types: M1-like microglia and M2-like microglia [33]. However, whether Nocardia infection can cause polarization of microglia remains unclear. Therefore, we detected the expression of markers of M1 (iNOS, CXCL-10, and CD86) and M2 (CD206 and ARG1) microglia after Nocardia infection using BV2 cells (Additional file 1: Fig. S7B). As shown in Fig. 7d, M1-type markers (iNOS, CXCL-10, and CD86) were significantly upregulated after infection, and the expression level of M2-type markers (CD206 and ARG1) did not change significantly. In addition, we also found that conditioned medium from N. farcinica-infected (CoN) RAW264.7 cells could significantly stimulate the expression of M1 markers (iNOS and CXCL-10) in microglia. This result indicated that Nocardia infection might cause PD-like symptoms via neuroinflammation mediated by polarized M1 microglia. In addition, both Nocardia-microglia and macrophage-microglia interactions played a crucial role in driving M1 microglia polarization.
To further clarify the characteristics of neuroinflammation caused by Nocardia infection, we analyzed inflammatory factors in the brain tissue of mice after Nocardia infection. To analyze whether the inflammatory factors in the brain were secreted by cells in the brain or were derived from peripheral blood and to analyze the relationship between the inflammatory factors in peripheral blood and brain tissue, we also detected the cytokine content in peripheral blood during different infection periods. As shown in Additional file 1: Fig. S10, cytokines in the brain (TNF-α, CCL-2, CXCL-2, CXCL-10, IL-1β, IL-6, IL-17, and M-CSF) were upregulated after infection at 3 dpi, and the cytokine content gradually decreased with extension of the infection time. In particular, the upregulated expression of CCL-2, CXCL-2, and CXCL-10 was the most significant. It has been reported that CXCL10, secreted from M1-type activated microglia, plays a crucial role in stimulating Th1 cell infiltration by serving as the ligand for CXCR3 T cells [34]. Interestingly, we found that CoN could stimulate microglia to significantly upregulate CXCL-10 compared with the direct interaction of N. farcinica and microglia. This result suggested that the upregulated CXCL-10 in the brain was partly secreted by polarized microglia, which was mainly mediated through macrophage-microglia interactions (Fig. 7d). Although these cytokines were upregulated in peripheral blood, their concentrations were significantly lower than those in brain tissue, which indicated that these cytokines were secreted by immune cells in the brain. In addition, the expression of IL-1β was significantly elevated at 3 dpi and lasted until 7 dpi in the brain. It has been reported that microglia activated by lipopolysaccharide (LPS) cause dopaminergic neuron damage in an IL-1β-dependent manner, resulting in PD-like neurological behavioral disorder [35].
To further analyze the mechanism of Nocardia infection responsible for PD-like neurological symptoms, the ΔnbtS mutant strain, which does not cause neurological symptoms after infection, was used in the next study. The mutant strain stimulated BV2 cells to produce fewer inflammatory factors, such as iNOS and CXCL-10, than the wild-type strain after infection. In addition, conditioned medium from the wild-type strain promoted BV2 cells to express more inflammatory factors than medium from the ΔnbtS mutant strain, especially CXCL-10 (Fig. 7d). These results indicated that CXCL-10 or iNOS played an important role in the neuroinflammation-mediated nervous system symptoms caused by Nocardia infection.
In vivo, we found that the morphology of microglia was significantly different in the brain after infection with the wild-type and ΔnbtS mutant strains. As shown in Fig. 7e, the main morphology of brain microglia after infection by the mutant strain had a more rod-like and amoeboid shape, while the microglia mainly had a ramified phenotype after infection with the ΔnbtS mutant strain. These results indicated that the activation of microglial status played a key role in the neurological symptoms induced by Nocardia infection.
Continuous activation of microglia is linked to the progression of PD by inducing dopaminergic neuron degeneration [36]. The MAPK signaling pathway in microglia plays an important role in the progression of PD [37]. In the present study, we found that Nocardia infection could cause significant activation of microglia, so we further studied the activation status of inflammation-related signaling pathways in vivo and in vitro. As shown in Fig. 7f, the extracellular regulated protein kinases (ERK) and c-jun n-terminal kinase (JNK) pathways were activated in BV2 cells after infection with Nocardia. In addition, these signaling molecules were also phosphorylated in the striatum of mouse brains infected with Nocardia. These results indicated that Nocardia-induced neurological behavioral disorder by activating microglia through the MAPK signaling pathway.